Solutions for Thursday, November 3

1. Consider the region R_{1} in \mathbb{R}^{2} shown below at right. In this problem, you will do a series of changes of coordinates to evaluate:

$$
\iint_{R_{1}} x-2 y d A
$$

(a) A simple type of transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a translation, which has the general form $T(s, t)=(s+a, t+b)$ for a fixed a and b. Find a translation T_{1} such that $T_{1}\left(R_{2}\right)=R_{1}$.

SOLUTION:

$$
T_{1}(u, v)=(u+2, v+1)
$$

(b) If T is a translation, what is its Jacobian matrix? How does it distort area?

SOLUTION:
If $T(u, v)=(u+a, v+b)$ where a and b are constants, then the Jacobian is

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1
$$

So T does not distort areas.
(c) Rewrite the original integral in terms of an integral over R_{2}.

SOLUTION:

$$
\iint_{R_{1}} x-2 y d A=\iint_{R_{2}}(u+2)-2(v+1) J\left(T_{1}\right) d A=\iint_{R_{2}} u-2 v d A
$$

(d) Find a linear transformation $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the unit square R_{3} to R_{2}. Check your answer with the instructor.
SOLUTION:

$$
T_{2}(s, t)=(2 s+t, s+3 t)
$$

(e) Compute $\iint_{R_{1}} x-2 y d A$ by relating it to an integral over R_{3} and evaluating that. Check your answer with the instructor.

SOLUTION:

The Jacobian of T_{2} is 5 . So

$$
\begin{gathered}
\iint_{R_{1}} x-2 y d A=\iint_{R_{2}} u-2 v d A=\int_{0}^{1} \int_{0}^{1}(2 s+t)-2(s+3 t) J\left(T_{2}\right) d s d t \\
=\int_{0}^{1} \int_{0}^{1}-25 t d s d t=-25 / 2
\end{gathered}
$$

2. Consider the region R shown below. Here the curved left side is given by $x=y-y^{2}$. In this problem, you will find a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the unit square $S=[0,1] \times[0,1]$ to R.

(a) As a warm up, find a transformation that takes S to the rectangle $[0,2] \times[0,1]$ which contains R.

SOLUTION:

$$
L(u, v)=(2 u, v)
$$

(b) Returning to the problem of finding T taking S to R, come up with formulas for $T(u, 0), T(u, 1), T(0, v)$, and $T(1, v)$. Hint: For three of these, use your answer in part (a).

SOLUTION:

$$
\begin{array}{ll}
T(u, 0)=(2 u, 0) & T(u, 1)=(2 u, 1) \\
T(1, v)=(2, v) & T(0, v)=\left(v-v^{2}, v\right)
\end{array}
$$

(c) Now extend your answer in (b) to the needed transformation T. Hint: Try "filling in" between $T(0, v)$ and $T(1, v)$ with a straight line.

SOLUTION:

$$
T(u, v)=(2 u+v(1-v)(1-u), v)
$$

(d) Compute the area of R in two ways, once using T to change coordinates and once directly.

SOLUTION:

To change coordinates we compute the Jacobian

$$
J(T)=\operatorname{det}\left(\begin{array}{cc}
2-v(1-v) & (1-2 v)(1-u) \\
0 & 1
\end{array}\right)=2-v(1-v)
$$

So we have the area of R given by

$$
\iint_{R} d x d y=\int_{0}^{1} \int_{0}^{1} 2-v(1-v) d u d v=11 / 6
$$

Computing directly we have the area of R given by

$$
\int_{0}^{1} 2-\left(y-y^{2}\right) d y=11 / 6
$$

3. In order to do a change of coordinates in three variables, you need to compute a determinant of a 3×3 Jacobian matrix. In this problem, you will practice computing such determinants. Consider the 3×3 matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 2 & -1 \\
3 & -2 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) One method of computing 3×3 determinants is by considering the diagonals. The determinant of A can be computed as follows: add up the products along the three \searrow diagonals and subtract off the products along the three \swarrow diagonals. Find $\operatorname{det} B$.

SOLUTION:

Using this method we have $\operatorname{det} A=a e i+b f g+c d h-a f h-b d i-c e g$. Applying this rule to B we find that

$$
\operatorname{det} B=-2+0+0-0-6-2=-10
$$

(b) The "cofactor" method of computing determinants is as follows: pick a row of the matrix. For each entry on that row, multiply that entry by the determinant of the 2×2 matrix obtained by removing that row and column from the 3×3 matrix. The determinant is then the alternating sum of these products (alternating means that every other term has a negative sign). If you use the first or third row, the signs are +-+ , and if you use the second row, the signs are -+- .
For example, using the first row,

$$
\operatorname{det} A=a \operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)+c \operatorname{det}\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right) .
$$

Compute det B by the method of cofactors once for each row. As you can see, it is usually a good idea to pick a row with the most 0's.

SOLUTION:

Using row 1 :

$$
\operatorname{det} B=1 \cdot(-2)-2 \cdot(3)+(-1) \cdot 2=-10
$$

Using row 2:

$$
\operatorname{det} B=-3 \cdot(2)+(-2) \cdot(2)-0=-10
$$

Using row 3 :

$$
\operatorname{det} B=1 \cdot(-2)-0+1 \cdot(-8)=-10
$$

