Thursday, September 8 ** Functions of several variables.

1. Consider the function

$$f(x,y) = \frac{2xy}{x^2 + y^2}.$$

- (a) What does this function look like along a line y = mx?
- (b) Sketch the graph of f(x, y).
- 2. Consider the function

$$f(x,y)=xy.$$

- (a) Sketch the level sets of f.
- (b) Sketch the graph of f(x, y). What is the name of this surface ?
- 3. Let f(x, y) = 3x + 5y 1. This problems deals with

$$\lim_{(x,y)\to(1,1)} 3x + 5y - 1.$$

- (a) Let $\varepsilon = 1$. Find a $\delta > 0$ such that if $||(x, y) (1, 1)|| < \delta$, then $|f(x, y) 7| < \epsilon$.
- (b) Now find a $\delta > 0$ for arbitrary ε (your answer should be in terms of ε).
- 4. In class, we showed that

$$\lim_{(x,y)\to(1,0)}\frac{x}{y}$$

does not exist, by approaching the point (1,0) along different lines. This can also be shown directly from the ε , δ definition. To do this, for each possible real number *L*, you must show that the limit cannot be *L*.

(a) Let *L* be any real number. For the value $\varepsilon = 1$, show that no matter which $\delta > 0$ is chosen, there is always a point (x, y) such that $||(x, y) - (1, 0)|| < \delta$ but $|\frac{x}{y} - L| \ge 1$. This shows that the limit is not *L*.

(**Hint:** Take *any* value for *x* in the interval $(1 - \delta, 1 + \delta)$. Show that there is a value for *y* that makes the above inequalities true.)

(b) More generally, show that for *any* $\varepsilon > 0$, no good δ can be found.