Thursday, September 8 ** Functions of several variables.

1. Consider the function

$$
f(x, y)=\frac{2 x y}{x^{2}+y^{2}}
$$

(a) What does this function look like along a line $y=m x$?
(b) Sketch the graph of $f(x, y)$.
2. Consider the function

$$
f(x, y)=x y
$$

(a) Sketch the level sets of f.
(b) Sketch the graph of $f(x, y)$. What is the name of this surface?
3. Let $f(x, y)=3 x+5 y-1$. This problems deals with

$$
\lim _{(x, y) \rightarrow(1,1)} 3 x+5 y-1
$$

(a) Let $\varepsilon=1$. Find a $\delta>0$ such that if $\|(x, y)-(1,1)\|<\delta$, then $|f(x, y)-7|<\epsilon$.
(b) Now find a $\delta>0$ for arbitrary ε (your answer should be in terms of ε).
4. In class, we showed that

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{x}{y}
$$

does not exist, by approaching the point $(1,0)$ along different lines. This can also be shown directly from the ε, δ definition. To do this, for each possible real number L, you must show that the limit cannot be L.
(a) Let L be any real number. For the value $\varepsilon=1$, show that no matter which $\delta>0$ is chosen, there is always a point (x, y) such that $\|(x, y)-(1,0)\|<\delta$ but $\left|\frac{x}{y}-L\right| \geq 1$. This shows that the limit is not L.
(Hint: Take any value for x in the interval $(1-\delta, 1+\delta)$. Show that there is a value for y that makes the above inequalities true.)
(b) More generally, show that for any $\varepsilon>0$, no good δ can be found.

