Tuesday, October 11 ** Integrating vector fields

- 1. Consider the function f(x,y) = 8y. Let *C* be the curve $x = y^2 1$ between the points P = (-1,0) and Q = (0,1).
 - (a) Find a parametrization $\mathbf{r}(t)$ for *C* starting at *P* and ending at *Q*.
 - (b) Using the parametrization from (a), compute $\int_C f \, ds$.
 - (c) Find a parametrization $\mathbf{q}(t)$ for *C* starting at *Q* and ending at *P*, and use this to calculate $\int_C f \, ds$. Did you get the same answer as in (b)?
 - (d) Using the two parametrizations from (a) and (c), calculate $\int_C f \, dy$. Do you get the same answer in both cases?
 - (e) Write $\mathbf{F} = \nabla(f)$. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ and $\int_C \mathbf{F} \cdot d\mathbf{q}$. Do you get the same answer in both cases?
- 2. Consider the curve *C* and vector field **F** shown to the right.
 - (a) Without parameterizing *C*, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. (Hint: Use the Fundamental Theorem for Line Integrals.)
 - (b) Find a parameterization of *C* and use it to check your answer in (a) by computing $\int_C \mathbf{F} \cdot d\mathbf{r}$ explicitly.

- 3. Consider the vector field $\mathbf{F} = (-y, x)$.
 - (a) Let C_1 be the straight line segment from (1,0) to (-1,0). Compute $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$.
 - (b) Let C_2 be the upper semicircle (with counter-clockwise orientation). Compute $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.
- 4. Suppose the curve *C* is contained within a level set of the function *f*.
 - (a) From the point of view of the Fundamental Theorem, why is $\int_C \nabla(f) \cdot d\mathbf{r} = 0$?
 - (b) Give a geometric explanation, not using the Fundamental Theorem, for why this line integral should be zero.