1. Consider the function $f(x, y)=8 y$. Let C be the curve $x=y^{2}-1$ between the points $P=(-1,0)$ and $Q=(0,1)$.
(a) Find a parametrization $\mathbf{r}(t)$ for C starting at P and ending at Q.
(b) Using the parametrization from (a), compute $\int_{C} f d s$.
(c) Find a parametrization $\mathbf{q}(t)$ for C starting at Q and ending at P, and use this to calculate $\int_{C} f d s$. Did you get the same answer as in (b)?
(d) Using the two parametrizations from (a) and (c), calculate $\int_{C} f d y$. Do you get the same answer in both cases?
(e) Write $\mathbf{F}=\nabla(f)$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C} \mathbf{F} \cdot d \mathbf{q}$. Do you get the same answer in both cases?
2. Consider the curve C and vector field \mathbf{F} shown to the right.
(a) Without parameterizing C, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Hint: Use the Fundamental Theorem for Line Integrals.)
(b) Find a parameterization of C and use it to check your answer in (a) by computing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ explicitly.

3. Consider the vector field $\mathbf{F}=(-y, x)$.
(a) Let C_{1} be the straight line segment from $(1,0)$ to $(-1,0)$. Compute $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$.
(b) Let C_{2} be the upper semicircle (with counter-clockwise orientation). Compute $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.
4. Suppose the curve C is contained within a level set of the function f.
(a) From the point of view of the Fundamental Theoerm, why is $\int_{C} \nabla(f) \cdot d \mathbf{r}=0$?
(b) Give a geometric explanation, not using the Fundamental Theorem, for why this line integral should be zero.
