Tuesday, October $25 \quad * * \quad$ Multiple integrals \mathcal{E} Polar coordinates

1. The function $P(x)=e^{-x^{2}}$ is fundamental in probability.
(a) Sketch the graph of $P(x)$. Explain why it is called a "bell curve."
(b) Compute $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ using the following brilliant strategy of Gauss.
i. Instead of computing I, compute $I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)$.
ii. Rewrite I^{2} as an integral of the form $\iint_{R} f(x, y) d A$ where R is the entire Cartesian plane.
iii. Convert that integral to polar coordinates.
iv. Evaluate to find I^{2}. Deduce the value of I.

Amazingly, it can be mathematically proven that there is NO elementary function $Q(x)$ (that is, function built up from sines, cosines, exponentials, and roots using "usual" operations) for which $Q^{\prime}(x)=P(x)$.
2. Let E be the polar triangle

$$
E=\{(r, \theta) \mid 0 \leq r \leq \pi / 2,0 \leq \theta \leq r\} .
$$

(a) Sketch E and compute its area.
(b) Let D be the region in the cartesian plane corresponding to E. Sketch D and find its area.
3. We have discussed the fact that the area of a disc of radius r is πr^{2} and that the volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
(a) Use a quadruple integral to find the volume of the hypersphere

$$
x^{2}+y^{2}+z^{2}+w^{2}=r^{2}
$$

of radius r in \mathbb{R}^{4}. You may wish to use either of the following integration formulas:

$$
\begin{aligned}
\int \cos ^{4} \theta d \theta & =\frac{1}{16}\left[4 \cos ^{3} \theta \sin \theta+6 \theta+3 \sin 2 \theta\right], \\
\text { or } \quad \int \sin ^{4} \theta d \theta & =\frac{1}{16}\left[-4 \sin ^{3} \theta \cos \theta+6 \theta-3 \sin 2 \theta\right] .
\end{aligned}
$$

(b) Use an iterated integral to find the volume of the hypersphere of radius r in \mathbb{R}^{n} to be

$$
\begin{aligned}
V_{n} & =\frac{2^{(n+1) / 2}}{3 \cdot 5 \cdots \cdots n} \pi^{(n-1) / 2} r^{n}, \quad n \text { odd } \\
V_{n} & =\frac{2^{n / 2}}{2 \cdot 4 \cdots \cdot n} \pi^{n / 2} r^{n}, \quad n \text { even. }
\end{aligned}
$$

You may wish to use the reduction formula

$$
\begin{aligned}
\int \cos ^{n} \theta d \theta & =\frac{1}{n} \cos ^{n-1} \theta \sin \theta+\frac{n-1}{n} \int \cos ^{n-2} \theta d \theta \\
\text { or } \quad \int \sin ^{n} \theta d \theta & =\frac{-1}{n} \sin ^{n-1} \theta \cos \theta+\frac{n-1}{n} \int \sin ^{n-2} \theta d \theta .
\end{aligned}
$$

