Thursday, October 27 ** *Transformations of* \mathbb{R}^2 .

Purpose: In class, we've seen several different coordinate systems on \mathbb{R}^2 and \mathbb{R}^3 beyond the usual rectangular ones: polar, cylindrical, and spherical. The lectures on Friday and Monday will cover the crucial technique of simplifying hard integrals using a change of coordinates (Section 15.9). The point of this worksheet is to familiarize you with some basic concepts and examples for this process.

Starting point: Here we consider a variety of transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$. Previously, we have used such functions to describe vector fields on the plane, but we can also use them to describe ways of distorting the plane:

- 1. Consider the transformation T(x, y) = (x 2y, x + 2y).
 - (a) Compute the image under *T* of each vertex in the below grid and make a careful plot of them, which should be fairly large as you will add to it later.

To speed this up, divide the task up among all members of the group.

- (b) For each pair A and B of vertices of the grid joined by a line, add the line segment joining T(A) to T(B) to your plot. This gives a rough picture of what T is doing. Check your answer with the instructor.
- (c) What is the image of the *x*-axis under *T*? The *y*-axis?
- (d) Consider the line *L* given by x + y = 1. What is the image of *L* under *T*? Is it a circle, an ellipse, a hyperbole, or something else? Hint: First, parameterize *L* by \mathbf{r} : $\mathbb{R} \to \mathbb{R}^2$ and then consider $\mathbf{f}(t) = T(\mathbf{r}(t))$.
- (e) Consider the circle *C* given by $x^2 + y^2 = 1$. What is the image of *C* under *T*?
- (f) Add T(L), T(C) and $T(\bigcirc)$ to your picture. Check your answer with the instructor.

Note: The transformation *T* is a particularly simple sort called a *linear transformation*.

2. Consider the transformation $T(x, y) = (y, x(1 + y^2))$. Draw the image of the picture below under *T*.

Hint: Parameterize each of the 5 line segments and proceed as in 1(d). To speed things, divide up the task.

Check your answer with the instructor.

3. In this problem, you'll construct a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates counterclockwise about the origin by $\pi/4$, as shown below.

- (a) Give a formula for *T* in terms of polar coordinates. That is, how does rotation affect *r* and θ ?
- (b) Write down *T* in terms of the usual rectangular (*x*, *y*) coordinates. Hint: first convert into polar, apply part (a) and then convert back into rectangular coordinates. Check your answer with the instructor.