1. (Topologist’s sine curve) Let \(\Gamma \subseteq \mathbb{R}^2 \) be the graph of \(\sin(1/x) \) for \(0 < x \leq 1/\pi \). Show that the closure \(\overline{\Gamma} \) is connected but not path-connected, locally connected, or locally path-connected.

2. Show that \(\mathbb{R}_{\text{cocountable}} \) is connected and locally connected but not path-connected or locally path-connected.

3. For any space \(X \), define the cone on \(X \) to be
\[
CX = (X \times I)/(X \times \{1\}).
\]
Show that \(CX \) is path-connected (no assumptions on \(X \)).

4. Show that \(\mathbb{R}_{\text{cofinite}} \) is compact.

5. Show that if \(X \) is a metric space and \(A \subseteq X \) is compact, then \(A \) is closed and bounded (contained in a single ball of finite radius).

6. (a) Show that if \(X \) is compact and \(Z \) is any space, then the projection \(p_Z : X \times Z \longrightarrow Z \) is closed.
 (b) (*) Show that the converse to (a) also holds. That is, if \(p_Z \) is closed for every \(Z \), then \(X \) is compact.