1. (Cantor set) Let \(A_0 = I = [0, 1] \). Define \(A_1 = A_0 \setminus \left(\left(\frac{1}{3}, \frac{2}{3} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \right) \). Similarly, define \(A_2 \) by removing the middle thirds of the intervals in \(A_1 \):

\[
A_2 = A_1 \setminus \left(\left(\frac{1}{9}, \frac{2}{9} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \right).
\]

In general, given \(A_n \) constructed in this way, we define \(A_{n+1} \) by removing the middle thirds of all intervals in \(A_n \). Define the Cantor set to be

\[
C = \bigcap_n A_n \subseteq [0, 1].
\]

(a) Show that \(C \) is compact (without using part (d)).
(b) Show that any compact, locally connected space has finitely many components. Conclude that \(C \) is not locally connected.
(c) Show that \(C \) is totally disconnected (every connected component is a singleton).
(d) Let \(D = \{0, 2\} \) with the discrete topology. Show that \(C \cong \prod D \). (Hint: instead of binary expansions, think about ternary expansions of numbers in \([0, 1]\).)

2. Let \(X \) be Hausdorff, and suppose that \(C, D \subseteq X \) are disjoint compact subsets. Show that there are disjoint open sets \(U, V \subseteq X \) with \(C \subseteq U \) and \(D \subseteq V \).

3. (Stereographic Projection) Let \(N = (0, \ldots, 0, 1) \in S^n \) be the North Pole. Define a homeomorphism \(S^n \setminus \{N\} \cong \mathbb{R}^n \) as follows. For each \(x \neq N \in S^n \), consider the ray starting at \(N \) and passing through \(x \). This meets the equatorial hyperplane (defined by \(x_{n+1} = 0 \)) in a point, which we call \(p(x) \).

(a) Determine a formula for \(p \) and show that it gives a homeomorphism.
(b) Conclude that the one-point compactification of \(\mathbb{R}^n \) is \(S^n \).

4. Show that if \(Z \) is locally compact Hausdorff and \(q : X \rightarrow Y \) is a quotient, then

\[
q \times \text{id}_Z : X \times Z \rightarrow Y \times Z
\]

is a quotient.