Math 551 - Topology I Homework 8 Fall 2013

1. (Metric completion) Let *X* be a metric space. Let C_X be the set of Cauchy sequences in *X*. Define a relation on C_X by

$$(x_n) \sim (y_n)$$
 if $\lim_n d_X(x_n, y_n) = 0.$

Define $X^* = (C_X / \sim)$. Then $d((x_n), (y_n)) = \lim_n d_X(x_n, y_n)$ defines a metric on X^* . Then the map

$$\iota: X \longrightarrow X^*$$
$$x \mapsto (x, x, \dots)$$

is an isometric embedding.

- (a) Show that $\iota(X)$ is dense in X^* .
- (b) Show that if *A* is a dense subset of a metric space *Z* and every Cauchy sequence in *A* converges in *Z*, then *Z* is complete. Conclude that *X*^{*} is complete.
- (c) Show that X is totally bounded if and only if X^* is compact.
- 2. A space satisfying the conclusion of the Baire Category Theorem is called a **Baire space**.
 - (a) Show that the irrationals are a Baire space.
 - (b) Show that Q is not a Baire space.
- 3. A subset $A \subseteq X$ is said to be **nowhere dense** in X if $Int(\overline{A}) = \emptyset$.
 - (a) Show that $A \subseteq X$ is closed and nowhere dense if and only if $A = \partial U$ for some open $U \subseteq X$.
 - (b) Show that a nonempty Baire space *X cannot* be expressed as a countable union of nowhere dense sets.