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Topology is the study of shapes. (The Greek meaning of the word is the study of places.) What
kind of shapes? Many are familiar objects: a circle or triangle or square. Going up in dimension,
we might want to study a sphere or box or a torus.

In fact, all of these arise as metric spaces, but topology is quite a bit more general. For starters,
a circle of radius 1 is the same as a circle of radius 123978632 from the eyes of topology. We will
also see that there are many interesting spaces that can be obtained by modifying familiar metric
spaces, but the resulting spaces cannot always be given a nice metric.

? ? ? ? ? ? ??
                 

? ? ? ? ? ? ??

As we said, many examples that we care about are metric spaces, so we’ll start by reviewing the
theory of metric spaces.

Definition 1.1. A metric space is a pair (X, d), where X is a set and d : X × X −→ R is a
function (called a “metric”) satisfying the following three properties:

(1) (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X
(2) (Positive-definite) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y
(3) (Triangle Inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z in X.

Example 1.2. (1) R is a metric space, with d(x, y) = |x− y|.
(2) R2 is a metric space, with d(x,y) =

√
(x1 − y1)2 + (x2 − y2)2. This is called the standard,

or Euclidean metric, on R2.
(3) Rn similarly has a Euclidean metric, defined by

d(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

(4) R2, with d(x,y) = max{|x1 − y1|, |x2 − y2|}.
(5) R2, with d(x,y) = |x1 − y1|+ |x2 − y2|.

Given a point x in a metric space X, we can consider those points “near to x”.

Definition 1.3. Let (X, d) be a metric space and let x ∈ X. We define the (open) ball of radius
r around x to be

Br(x) = {y ∈ X | d(x, y) < r}.
Example 1.4. (1) In R, with the usual metric, we have Br(x) = (x− r, x+ r).

(2) In R2, with the standard metric, we have Br(x) is a disc of radius r, centered at x.
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(3) In Rn, with the standard metric, we have Br(x) is an n-dimensional ball of radius r, centered
at x.

(4) In R2, with the max metric, Br(x) takes the form of a square, with sides of length 2r,
centered at x.

(5) In R2, with the “taxicab” metric, Br(x) is a diamond, with sides of length r
√

2, centered
at x.

In the definition of a metric space, we had a metric function X ×X −→ R. Let’s review: what
is the set X ×X? More generally, what is X × Y , when X and Y are sets. We know this as the
set of ordered pairs

X × Y = {(x, y) | x ∈ X, y ∈ Y }.
This is the usual definition of the cartesian product of two sets. One of the points of emphasis
in this class will be not just objects or constructions but rather maps into/out of objects. With
that in mind, given the cartesian product X × Y , can we say anything about maps into or out of
X × Y ?

The first thing to note is that there are two “natural” maps out of the product; namely, the
projections. These are

pX : X × Y −→ X, pX(x, y) = x

and

pY : X × Y −→ Y pY (x, y) = y.

Now let’s consider functions into X × Y from other, arbitrary, sets. Suppose that Z is a set. How
would one specify a function f : Z −→ X × Y ? For each z ∈ Z, we would need to give a point
f(z) ∈ X × Y . This point can be described by listing its X and Y coordinates. Given that the
projection pX takes a point in the product and picks out its X-coordinate, it follows that the
function fX defined as the composition

Z
f−→ X × Y pX−−→ X

is the function of X-coordinates of the function f . We similarly get a function fY by using pY
instead.

And the main point of this is that the function f contains the same information as the pair of
functions fX and fY .

Proposition 1.5. (Universal property of the cartesian prod-
uct) Let X, Y , and Z be any sets. Suppose given functions
fX : Z −→ X and fY : Z −→ Y . Then there exists a unique
function f : Z −→ X × Y such that

fX = pX ◦ f, and fY = pX ◦ f.

X

Z
f //

fX
00

fY ..

X × Y
pX

;;

pY

##
Y

Furthermore, it turns out that the above property uniquely characterizes the cartesian product
X × Y , up to bijection. We called this a “Proposition”, but there is nothing difficult about this,
once you understand the statement. The major advance at this point is simply the reframing of a
familiar concept. We will see later in the course why this is useful.

As we already said, we will promote the viewpoint that it is not just objects that are important,
but also maps. We have introduced the concept of a metric space, so we should then ask “What
are maps between metric spaces”?

The strictest answer is what is known as an isometry: a function f : X −→ Y such that
dY (f(x1), f(x2)) = dX(x1, x2) for all pairs of points x1 and x2 in X. This is a perfectly fine answer
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in many regards, but for our purposes, it will be too restrictive. For instance, what are all isometries
R −→ R?

We will prefer to study the more general class of continuous functions.

2. Fri, Aug. 30

Definition 2.1. A function f : X −→ Y between metric spaces is continuous if for every x ∈ X
and for every ε > 0, there is a δ > 0 such that whenever x′ ∈ Bδ(x), then f(x′) ∈ Bε(f(x)).

This is the standard definition, taken straight from Calc I and written in the language of metric
spaces. However, it is not always the most convenient formulation.

Proposition 2.2. Let f : X −→ Y be a function between metric spaces. The following are
equivalent:

(1) f is continuous
(2) for every x ∈ X and for every ε > 0, there is a δ > 0 such that

Bδ(x) ⊆ f−1(Bε(f(x)))

(3) For every y ∈ Y and ε > 0 and x ∈ X, if f(x) ∈ Bε(y), then there exists a δ > 0 such that

Bδ(x) ⊆ f−1(Bε(y))

(4) For every y ∈ Y and ε > 0 and x ∈ X, if x ∈ f−1(Bε(y)), then there exists a δ > 0 such
that

Bδ(x) ⊆ f−1(Bε(y))

The property that f−1(Bε(y)) satisfies in condition (4) is important, and we give it a name:

Definition 2.3. Let U ⊆ X be a subset. We say that U is open in X if whenever x ∈ U , then
there exists a δ > 0 such that Bδ(x) ⊆ U .

With this language at hand, we can restate condition (4) above as

(4′) For every y ∈ Y and ε > 0, f−1(Bε(y)) is open in X.

The language suggests that an open ball should count as an open set, and this is indeed true.

Proposition 2.4. Let c ∈ X and ε > 0. Then Bε(c) is open in X.

Proof. Suppose x ∈ Bε(c). This means that d(x, c) < ε. Write d for this distance. Let

δ = ε− d.

We claim that this is the desired δ. For suppose that u ∈ Bδ(x). Then

d(u, c) ≤ d(u, x) + d(x, c) < δ + d = ε.

(Draw a picture!) �

Ok, so the notion of open set is closely related to that of open ball: every open ball is an open
set, and every open set is required to contain a number of these open balls. Even better, we have
the following result:

Proposition 2.5. A subset U ⊆ X is open if and only if it can be expressed as a union of open
balls.
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Proof. Suppose U is open, and let x ∈ U . By definition, there exists δx > 0 with Bδx(x) ⊆ U .
Since this is true for every x ∈ U , we have⋃

x∈U
Bδx(x) ⊆ U.

But every x ∈ U is contained in the union, so clearly U must also be contained in the union. It
follows that ⋃

x∈U
Bδx(x) = U.

Now suppose, on the other hand, that U =
⋃
αBδα(xα). We wish to show that U is open. Well,

suppose u ∈ U . Since U is expressed as a union, this implies that u ∈ Bδα(xα) for some α. This
ball is contained in U by the definition of U , so we are done. �

Corollary 2.6. Any union of open subsets of X is open.

With this description of open sets in hand, we give what is often the most useful characterization
of continuous maps.

Proposition 2.7. Let f : X −→ Y be a function between metric spaces. The following are
equivalent:

(1) f is continuous
(5) For every open subset V ⊆ Y , the preimage f−1(V ) is open in X.

Proof. It is clear that (5) implies (4′), which is equivalent to (1) by Prop 2.2. Now assume (1),
or, equivalently, (4′). Let V ⊆ Y be open. By the previous result, V is a union of balls, and by
(4′) we know that the preimage of each ball is open. Using Corollary 2.6, it follows that f−1(V ) is
open. �

For example, let’s show that the translation map t : R −→ R defined by t(x) = x+1 is continuous,
but that

f : R −→ R, f(x) =

{
x x < 0
x+ 2 x ≥ 0

is not continuous. As we already said, a ball in R is an open interval, and

t−1(a, b) = (a− 1, b− 1)

is certainly open. On the other hand, (1, 3) is open but f−1(1, 3) = [0, 1) is not (since it contains
0 but no ball centered at 0).

In calculus, we are also used to thinking of continuity in terms of convergence of sequences.
Recall that a sequence (xn) in X converges to x if for every ε > 0 there exists N such that for all
n > N , we have xn ∈ Bε(x). We say that a “tail” of the sequence is contained in the ball around x.

Proposition 2.8. Let f : X −→ Y be a function between metric spaces. The following are
equivalent:

(1) f is continuous
(6) For every convergent sequence (xn) → x in X, the sequence (f(xn)) converges to f(x) in

Y .

Proof. Suppose that f is continuous and assume xn → x. We want to show that f(xn)→ f(x). So
let f(x) ∈ V ⊆ Y be open. By assumption, f−1(V ) is open, and x ∈ f−1(V ). By the definition of
convergence, it follows that a tail of this sequence is in f−1(V ). Now apply f , and we find that the
image of that tail (in other words, a tail of the image sequence) is contained in V .

We will deal with the other implication next time. �
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