
29. Mon, Nov. 3

Locally compact Hausdor↵ spaces are a very nice class of spaces (almost as good as compact
Hausdor↵). In fact, any such space is close to a compact Hausdor↵ space.

Definition 29.1. A compactification of a noncompact space X is an embedding i : X ,! Y ,
where Y is compact and i(X) is dense.

We will typically work with Hausdor↵ spaces X, in which case we ask the compactification Y to
also be Hausdor↵.

Example 29.2. The open interval (0, 1) is not compact, but (0, 1) ,! [0, 1] is a compactification.
Note that the exponential map exp : (0, 1) �! S1 also gives a (di↵erent) compactification.

There is often a smallest compactification, given by the following construction.

Definition 29.3. Let X be a space and define bX = X [ {1}, where U ✓ bX is open if either

• U ✓ X and U is open in X or
• 1 2 U and bX \ U ✓ X is compact.

Proposition 29.4. Suppose that X is Hausdor↵ and noncompact. Then bX is a compactification.
If X is locally compact, then bX is Hausdor↵.

Proof. We first show that bX is a space! It is clear that both ; and bX are open.
Suppose that U

1

and U
2

are open. We wish to show that U
1

\ U
2

is open.

• If neither open set contains 1, this follows since X is a space.
• If 1 2 U

1

but 1 /2 U
2

, then K
1

= X \U
1

is compact. Since X is Hausdor↵, K
1

is closed in
X. Thus X \K

1

= U
1

\ {1} is open in X, and it follows that U
1

\ U
2

= (U
1

\ {1}) \ U
2

is open.
• If 1 2 U

1

\ U
2

, then K
1

= X \ U
1

and K
2

= X \ U
2

are compact. It follows that K
1

[K
2

is compact, so that U
1

\ U
2

= X \ (K
1

[K
2

) is open.

• Suppose we have a collection U
i

of open sets. If none contain 1, then neither does
[

i

U
i

,

and the union is open in X. If 1 2 U
j

for some j, then 1 2
[

i

U
i

and

bX \
[

i

U
i

=
\

i

( bX \ U
i

) =
\

i

(X \ U
i

)

is a closed subset of the compact set X \ U
j

, so it must be compact.

Next, we show that ◆ : X �! bX is an embedding. Continuity of ◆ again uses that compact
subsets of X are closed. That ◆ is open follows immediately from the definition of bX.

To see that ◆(X) is dense in bX, it su�ces to see that {1} is not open. But this follows from the
definition of bX, since X is not compact.

Finally, we show that bX is compact. Let U be an open cover. Then some U 2 U must contain
1. The remaining elements of U must cover X \U , which is compact. It follows that we can cover
X \ U using only finitely many elements, so U has a finite subcover.

Now suppose thatX is locally compact. Let x
1

and x
2

in bX. If neither is1, then we have disjoint
neighborhoods in X, and these are still disjoint neighborhoods in bX. If x

2

= 1, let x
1

2 U ✓ K,
where U is open and K is compact. Then U and V = bX \K are the desired disjoint neighborhoods
. ⌅
Example 29.5. We saw that S1 is a one-point compactification of (0, 1) ⇠= R. You will show on
your homework that similarly Sn is a one-point compactification of Rn.
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Example 29.6. As we have seen, Q is not locally compact, so we do not expect bQ to be Hausdor↵.
Indeed, the point 1 is dense in bQ. Because of the topology on bQ, this is equivalent to showing
that for any open, nonempty subset U ✓ Q, U is not contained in any compact subset. Since Q
is Hausdor↵, if U were contained in a compact subset, then U would also be compact. But as we
have seen, for any interval (a, b) \Q, the closure in Q, which is [a, b] \Q, is not compact.

30. Wed, Nov. 5

Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally.

Proposition 30.1. Let X be locally compact Hausdor↵ and let
f : X �! Y be a compactification. Then there is a (unique) quo-
tient map q : Y �! bX such that q � f = ◆.

Y
q // bX

X
f

__

◆

??

We will need:

Lemma 30.2. Let X be locally compact Hausdor↵ and f : X �! Y a compactification. Then f is
open.

Proof. Since f is an emebedding, we can pretend that X ✓ Y and that f is simply the inclusion.
We wish to show that X is open in Y . Thus let x 2 X. Let U be a precompact neighborhood of x.
Thus K = cl

X

(U) is compact3 and so must be closed in Y (and X) since Y is Hausdor↵. By the
definition of the subspace topology, we must have U = V \X for some open V ✓ Y . Then V is a
neighborhood of x in Y , and

V = V \ Y = V \ cl
Y

(X) ✓ cl
Y

(V \X) = K ✓ X.

⌅
Proof of Prop. 30.1. We define

q(y) =

⇢

◆(x) if y = f(x)
1 if y /2 f(X).

To see that q is continuous, let U ✓ bX be open. If 1 /2 U , then q�1(U) = f(◆�1(U)) is open by
the lemma. If 1 2 U , then K = bX \ U is compact and thus closed. We have q�1(K) = f(◆�1(K))
is compact and closed in Y , so it follows that q�1(U) = Y \ q�1(K) is open.

Note that q is automatically a quotient map since it is a closed continuous surjection (it is closed
because Y is compact and bX is Hausdor↵). Note also that q is unique because bX is Hausdor↵ and
q is already specified on the dense subset f(X) ✓ Y . ⌅

Remark 30.3. Note that if we apply the one-point compactification to a (locally compact) metric
space X, there is no natural metric to put on X, so one might ask for a good notion of compactifi-
cation for metric spaces. Given the result above, this should be related to the idea of a completion
of a metric space. See HW8.

The following result is often useful, and it matches more closely what we might have expected
the definition of locally compact to resemble.

Proposition 30.4. Let X be locally compact and Hausdor↵. Let U be an open neighborhood of x.
Then there is a precompact open set V with

x 2 V ✓ V ✓ U.

3We will need to distinguish between closures in X and closures in Y , so we use the notation cl
X

(A) for closure

rather than our usual A.
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Proof. We use Prop 29.4. Thus let X ,! Y be the one-point compactification. By definition, U
is still open in Y , so K = Y � U is closed in Y and therefore compact. By HW 7.3, we can find
disjoint open sets V and W in Y with x 2 V and K ✓ W . Since W is open, it follows that V is
disjoint from W and therefore also from K. In other words, V is contained in U . ⌅

Proposition 30.5. A space X is Hausdor↵ and locally compact if and only if it is homeomorphic
to an open subset of a compact Hausdor↵ space Y .

Proof. ()). We saw that X is open in the compact Hausdor↵ space Y = bX.
(() As a subspace of a Hausdor↵ space, it is clear that X is Hausdor↵. It remains to show

that every point has a compact neighborhood (in X). Write Y1 = Y \X. This is closed in Y and
therefore compact. By Problem 3 from HW7, we can find disjoint open sets x 2 U and Y1 ✓ V in
Y . Then K = Y \ V is the desired compact neighborhood of x in X. ⌅

Corollary 30.6. If X and Y are locally compact Hausdor↵, then so is X ⇥ Y .

Corollary 30.7. Any open or closed subset of a locally compact Hausdor↵ space is locally compact
Hausdor↵.

31. Fri, Nov 7

We finally turn to the so-called “separation axioms”.

Definition 31.1. A space X is said to be

• T
0

if given two distinct points x and y, there is a neighborhood of one not containing the
other

• T
1

if given two distinct points x and y, there is a neighborhood of x not containing y and
vice versa (points are closed)

• T
2

(Hausdor↵) if any two distinct points x and y have disjoint neighborhoods
• T

3

(regular) if points are closed and given a closed subset A and x /2 A, there are disjoint
open sets U and V with A ✓ U and x 2 V

• T
4

(normal) if points are closed and given closed disjoint subsets A and B, there are disjoint
open sets U and V with A ✓ U and B ✓ V .

Note that T
4

=) T
3

=) T
2

=) T
1

=) T
0

. But beware that in some literature, the “points
are closed” clause is not included in the definition of regular or normal. Without that, we would
not be able to deduce T

2

from T
3

or T
4

.
We have talked a lot about Hausdor↵ spaces. The other important separation property is T

4

. We
will not really discuss the intermediate notion of regular (or the other variants completely regular,
completely normal, etc.)

Proposition 31.2. Any compact Hausdor↵ space is normal.

Proof. This was homework problem 7.3. ⌅

Later in the course, we will see that this generalizes to locally compact Hausdor↵, as long as
we add in the assumption that the space is second-countable. Another important class of normal
spaces is the collection of metric spaces.

Proposition 31.3. If X is metric, then it is normal.
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Proof. Let X be metric and let A,B ✓ X be closed and disjoint. For every a 2 A, let ✏
a

> 0 be a
number such that B

✏

a

(a) does not meet B (using that B is closed). Let

U
A

=
[

a2A
B

✏

a

/2

(a).

Similarly, we let

U
B

=
[

b2B
B

✏

b

/2

(b).

It only remains to show that U
A

and U
B

must be disjoint. Let x 2 B
✏

a

/2

(a) ✓ U
A

and pick any
b 2 B. We have

d(a, x) <
1

2
✏
a

<
1

2
d(a, b)

and thus

d(x, b) � d(a, b)� d(a, x) > d(a, b)� 1

2
d(a, b) =

1

2
d(a, b) >

1

2
✏
b

.

It follows that U
A

\ U
B

= ;. ⌅
Unfortunately, the T

4

condition alone is not preserved by the constructions we have studied.

Example 31.4. (Images) We will see that R is normal. But recall the quotient map q : R �!
{�1, 0, 1} which sends any number to its sign. This quotient is not Hausdor↵ and therefore not
(regular or) normal.

Example 31.5. (Subspaces) If J is uncountable, then the product (0, 1)J is not normal (Munkres,
example 32.2). This is a subspace of [0, 1]J , which is compact Hausdor↵ by the Tychono↵ theorem
and therefore normal. So a subspace of a normal space need not be normal. We also saw in this
example that (uncountable) products of normal spaces need not be normal.

Example 31.6. (Products) The lower limit topology R
``

is normal (Munkres, example 31.2), but
R
``

⇥R
``

is not normal (Munkres, example 31.3). Note that this also gives an example of a Hausdor↵
space that is not normal.

Ok, so we’ve seen a few examples. So what, why should we care about normal spaces? Look
back at the definition for T

2

, T
3

, T
4

. In each case, we need to find certain open sets U and V . How
would one do this in general? In a metric space, we would build these up by taking unions of balls.
In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling
back open sets under a continuous map. That is, suppose we have a map f : X �! [0, 1] such that
f ⌘ 0 on A and f ⌘ 1 on B. Then A ✓ U := f�1([0, 1

2

)) and B ✓ V := f�1((1
2

, 1]), and U \ V = .
First, note that the definition of normal, by considering the complement of B, can be restated

as

Lemma 31.7. Let X be normal, and suppose given A ✓ U with A closed and U open. Then there
exists an open set V with

A ✓ V ✓ V ✓ U.

Now we have another very important result.

Theorem 31.8 (Urysohn’s Lemma). Let X be normal and let A and B be disjoint closed subsets.
Then there exists a continuous function f : X �! [0, 1] such that A ✓ f�1(0) and B ✓ f�1(1).

Sketch of proof. Define U
1

= X \ B, so that we have A ✓ U
1

. Since X is normal, we can find an
open U

0

with A ✓ U
0

✓ U
0

✓ U
1

. By induction on the rational numbers r 2 Q\ (0, 1), we can find
for each r an open set U

r

with U
r

⇢ U
s

if r < s. We also define U
r

= X for r > 1. Then define

f(x) = inf{r 2 Q \ [0, 1.001) | x 2 U
r

}.
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Now if x 2 A, then x 2 U
0

, so f(x) = 0 as desired. If x 2 B, then x /2 U
1

, but x 2 U
r

for any
r > 1, so f(x) = 1 as desired. It remains to show that f is continuous.

It su�ces to show that the preimage under f of the prebasis elements (�1, a) and (a,1) are
open. We have

f�1(�1, a) =
[

r2Q
r<a

U
r

, and f�1(a,1) =
[

r2Q
r>a

X \ U
r

To see the second equality, note that if f(x) > a then for any a < r < f(x), we have x /2 U
r

.
But we can then find r < s < f(x), so that x /2 U

s

◆ U
r

◆ U
r

. For more details, see either [Lee,
Thm 4.82] or [Munkres, Thm 33.1]. ⌅

Note that Urysohn’s Lemma becomes an if and only if statement if we either drop the T
1

-condition
from normal or if we explicitly include singletons as possible replacements for A and B.
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