29. Mon, Nov. 3

Locally compact Hausdorff spaces are a very nice class of spaces (almost as good as compact
Hausdorff). In fact, any such space is close to a compact Hausdorff space.

Definition 29.1. A compactification of a noncompact space X is an embedding ¢ : X — Y,
where Y is compact and i(X) is dense.

We will typically work with Hausdorff spaces X, in which case we ask the compactification Y to
also be Hausdorff.

Example 29.2. The open interval (0, 1) is not compact, but (0,1) < [0, 1] is a compactification.
Note that the exponential map exp : (0,1) — S! also gives a (different) compactification.

There is often a smallest compactification, given by the following construction.

Definition 29.3. Let X be a space and define X = X U {oc0}, where U C X is open if either
e U C X and U is open in X or
e 00 € U and X \ U C X is compact.

Proposition 29.4. Suppose that X is Hausdorff and noncompact. Then X isa compactification.
If X s locally compact, then X is Hausdorff.

Proof. We first show that Xisa space! It is clear that both () and X are open.
Suppose that Uy and U, are open. We wish to show that U; N Uy is open.
e If neither open set contains oo, this follows since X is a space.
e If oo € U; but oo ¢ Us, then K7 = X \ U; is compact. Since X is Hausdorff, K7 is closed in
X. Thus X \ K7 = U; \ {oo} is open in X, and it follows that U3y N Uz = (U; \ {o0}) N Us
is open.
e If co € Uy NUy, then K1 = X \ Uy and Ky = X \ Uy are compact. It follows that K7 U Ko
is compact, so that Uy N Uy = X \ (K7 U K3) is open.
e Suppose we have a collection U; of open sets. If none contain oo, then neither does U Ui,
7
and the union is open in X. If oo € U; for some j, then oo € U U; and
7
X\Jui =X \U) =X\ Us)
(2

] 7

is a closed subset of the compact set X \ Uj, so it must be compact.

Next, we show that ¢+ : X — X is an embedding. Continuity of ¢ again uses that compact
subsets of X are closed. That ¢ is open follows immediately from the definition of X.

To see that ¢(X) is dense in X, it suffices to see that {oo} is not open. But this follows from the
definition of X , since X is not compact.

Finally, we show that X is compact. Let & be an open cover. Then some U € U/ must contain
oo. The remaining elements of & must cover X \ U, which is compact. It follows that we can cover
X \ U using only finitely many elements, so I has a finite subcover.

Now suppose that X is locally compact. Let x; and x5 in X.If neiﬁher is 0o, then we have disjoint
neighborhoods in X, and these are still disjoint neighborhoods in X. If o = 00, let 1 € U C K,
where U is open and K is compact. Then U and V = X \ K are the desired disjoint neighborhoods

|

Example 29.5. We saw that S' is a one-point compactification of (0,1) = R. You will show on
your homework that similarly S™ is a one-point compactification of R"™.
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Example 29.6. As we have seen, Q is not locally compact, so we do not expect @ to be Hausdorft.
Indeed, the point oo is dense in @ Because of the topology on @, this is equivalent to showing
that for any open, nonempty subset U C Q, U is not contained in any compact subset. Since Q
is Hausdorff, if U were contained in a compact subset, then U would also be compact. But as we
have seen, for any interval (a,b) N Q, the closure in Q, which is [a,b] N Q, is not compact.

30. WED, Nov. 5

Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally.

q ~
Proposition 30.1. Let X be locally compact Hausdorff and let Yoem=-- - X
f: X —Y be a compactification. Then there is a (unique) quo- \ /
tient map q : Y — X such that qo f = . ! X ’

We will need:

Lemma 30.2. Let X be locally compact Hausdorff and f: X — Y a compactification. Then f is
open.

Proof. Since f is an emebedding, we can pretend that X C Y and that f is simply the inclusion.
We wish to show that X is open in Y. Thus let x € X. Let U be a precompact neighborhood of .
Thus K = clx(U) is compact® and so must be closed in Y (and X) since Y is Hausdorff. By the
definition of the subspace topology, we must have U = V N X for some open V C Y. Then V is a
neighborhood of z in Y, and

V=VNnY=Vney(X)Ccy(VNX)=KCX.

Proof of Prop. 30.1. We define

oo ify ¢ f(X).

To see that ¢ is continuous, let U C X be open. If oo ¢ U, then ¢~ (U) = f(+=1(U)) is open by
the lemma. If oo € U, then K = X \ U is compact and thus closed. We have ¢~1(K) = f(:}(K))
is compact and closed in Y, so it follows that ¢=1(U) = Y \ ¢~ (K) is open.

Note that ¢ is automatically a quotient map since it is a closed continuous surjection (it is closed

because Y is compact and X is Hausdorff). Note also that ¢ is unique because X is Hausdorff and
q is already specified on the dense subset f(X) C Y. |

q(y) = { Wz) ify=f(x)

Remark 30.3. Note that if we apply the one-point compactification to a (locally compact) metric
space X, there is no natural metric to put on X, so one might ask for a good notion of compactifi-
cation for metric spaces. Given the result above, this should be related to the idea of a completion
of a metric space. See HWS.

The following result is often useful, and it matches more closely what we might have expected
the definition of locally compact to resemble.

Proposition 30.4. Let X be locally compact and Hausdorff. Let U be an open neighborhood of x.
Then there is a precompact open set V with
reVCVCU.
3We will need to distinguish between closures in X and closures in Y, so we use the notation clx(A) for closure

rather than our usual A.
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Proof. We use Prop 29.4. Thus let X — Y be the one-point compactification. By definition, U
is still open in Y, so K =Y — U is closed in Y and therefore compact. By HW 7.3, we can find
disjoint open sets V and W in Y with € V and K C W. Since W is open, it follows that V is
disjoint from W and therefore also from K. In other words, V is contained in U. |

Proposition 30.5. A space X is Hausdorff and locally compact if and only if it is homeomorphic
to an open subset of a compact Hausdorff space Y .

Proof. (=). We saw that X is open in the compact Hausdorff space Y = X.

(«<=) As a subspace of a Hausdorff space, it is clear that X is Hausdorff. It remains to show
that every point has a compact neighborhood (in X). Write Yo, = Y \ X. This is closed in Y and
therefore compact. By Problem 3 from HW7, we can find disjoint open sets x € U and Y, C V in
Y. Then K =Y \ V is the desired compact neighborhood of z in X. n

Corollary 30.6. If X and Y are locally compact Hausdorff, then so is X x Y.

Corollary 30.7. Any open or closed subset of a locally compact Hausdorff space is locally compact
Hausdorff.

31. Fri, Nov 7

We finally turn to the so-called “separation axioms”.

Definition 31.1. A space X is said to be

e Tj if given two distinct points = and y, there is a neighborhood of one not containing the
other

e T if given two distinct points x and y, there is a neighborhood of x not containing y and
vice versa (points are closed)

e Ty (Hausdorff) if any two distinct points x and y have disjoint neighborhoods

e T3 (regular) if points are closed and given a closed subset A and = ¢ A, there are disjoint
open sets U and V with A CU and x € V

e T, (normal) if points are closed and given closed disjoint subsets A and B, there are disjoint
open sets U and V with AC U and BC V.

Note that Ty, = T3 = 1o = 1T} = Ty. But beware that in some literature, the “points
are closed” clause is not included in the definition of regular or normal. Without that, we would
not be able to deduce 15 from T3 or Tjy.

We have talked a lot about Hausdorff spaces. The other important separation property is Ty. We
will not really discuss the intermediate notion of regular (or the other variants completely regular,
completely normal, etc.)

Proposition 31.2. Any compact Hausdorff space is normal.

Proof. This was homework problem 7.3. |

Later in the course, we will see that this generalizes to locally compact Hausdorff, as long as
we add in the assumption that the space is second-countable. Another important class of normal
spaces is the collection of metric spaces.

Proposition 31.3. If X is metric, then it is normal.
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Proof. Let X be metric and let A, B C X be closed and disjoint. For every a € A, let ¢, > 0 be a
number such that B, (a) does not meet B (using that B is closed). Let

Ua= U Bea/2(a)'
acA
Similarly, we let
Up = U B, /2(b).
beB
It only remains to show that Uy and Up must be disjoint. Let x € B, /2(a) € Ua and pick any
b € B. We have

1 1
d(a,z) < 5 < §d(a, b)
and thus . . 1
d(z,b) > d(a,b) — d(a,z) > d(a,b) — id(a, b) = Ed(a, b) > 6
It follows that U4 N Ugr = 0. [ |

Unfortunately, the T condition alone is not preserved by the constructions we have studied.

Example 31.4. (Images) We will see that R is normal. But recall the quotient map ¢ : R —
{—1,0,1} which sends any number to its sign. This quotient is not Hausdorff and therefore not
(regular or) normal.

Example 31.5. (Subspaces) If J is uncountable, then the product (0,1)” is not normal (Munkres,
example 32.2). This is a subspace of [0, 1]J , which is compact Hausdorff by the Tychonoff theorem
and therefore normal. So a subspace of a normal space need not be normal. We also saw in this
example that (uncountable) products of normal spaces need not be normal.

Example 31.6. (Products) The lower limit topology Ry, is normal (Munkres, example 31.2), but
Ry xRy is not normal (Munkres, example 31.3). Note that this also gives an example of a Hausdorff
space that is not normal.

Ok, so we've seen a few examples. So what, why should we care about normal spaces? Look
back at the definition for T5, T3, Ty. In each case, we need to find certain open sets U and V. How
would one do this in general? In a metric space, we would build these up by taking unions of balls.
In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling
back open sets under a continuous map. That is, suppose we have a map f : X — [0, 1] such that
f=0onAand f=1on B. Then AC U := f71([0,3)) and BC V:= f~1((3,1]), and UNV = .

First, note that the definition of normal, by considering the complement of B, can be restated
as

Lemma 31.7. Let X be normal, and suppose given A C U with A closed and U open. Then there
exists an open set V with B
ACV CVCU.

Now we have another very important result.

Theorem 31.8 (Urysohn’s Lemma). Let X be normal and let A and B be disjoint closed subsets.
Then there exists a continuous function f: X — [0,1] such that A C f~1(0) and B C f~1(1).

Sketch of proof. Define Uy = X \ B, so that we have A C U;. Since X is normal, we can find an
open U with A C Uy C Uy C U;. By induction on the rational numbers r € QN (0,1), we can find
for each r an open set U, with U, C Uy if r < s. We also define U, = X for r > 1. Then define
f(z) =inf{r e QN 0,1.001) | x € U, }.
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Now if z € A, then z € Uy, so f(z) = 0 as desired. If 2 € B, then = ¢ Uy, but z € U, for any
r > 1,s0 f(x) =1 as desired. It remains to show that f is continuous.
It suffices to show that the preimage under f of the prebasis elements (—o0,a) and (a,c0) are
open. We have
o) = J U, and Tl (a00) = | X\TS
reQ reQ

r<a r>a
To see the second equality, note that if f(x) > a then for any a < r < f(z), we have z ¢ U,.
But we can then find r < s < f(z), so that z ¢ Us O U, D U,. For more details, see either [Lee,
Thm 4.82] or [Munkres, Thm 33.1]. [

Note that Urysohn’s Lemma becomes an if and only if statement if we either drop the T;-condition
from normal or if we explicitly include singletons as possible replacements for A and B.
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