Last time, we saw that a space is normal if and only if any two closed sets can be separated by a continuous function (modulo the T_1 condition). Here is another important application of normal spaces.

Theorem 32.1 (Tietze extension theorem). Suppose X is normal and $A \subseteq X$ is closed. Then any continuous function $f : A \rightarrow [0,1]$ can be extended to a continuous function $\tilde{f} : X \rightarrow [0,1]$.

Again, this becomes an if and only if if we drop the T_1-condition from normal.

It is also easy to see that the result fails if we drop the hypothesis that A is closed. Consider $X = S^1$ and A is the complement of a point. Then we know that $A \cong (0,1)$, but this homeomorphism cannot extend to a map $S^1 \rightarrow (0,1)$.

Sketch of proof. It is more convenient for the purpose of the proof to work with the interval $[-1,1]$ rather than $[0,1]$. Thus suppose $f : A \rightarrow [-1,1]$ is continuous. Then $A_1 = f^{-1}([-1,-1/3])$ and $B_1 = f^{-1}([1/3,1])$ are closed, disjoint subsets of A and therefore also of X. Since X is normal, we have a Urysohn function $g_1 : X \rightarrow [-1/3,1/3]$ which separates A_1 and B_1. It is simple to check that $|f(a) - g_1(a)| \leq 2/3$ for all $a \in A$. In other words, we have a map $f_1 = f - g_1 : A \rightarrow [-2/3,2/3]$.

Define $A_2 = f_1^{-1}([-2/3,-2/9])$ and $B_2 = f_1^{-1}([2/9,2/3])$. We get a Urysohn function $g_2 : X \rightarrow [-2/9,2/3]$ which separates A_2 and B_2. Then the difference $f_2 = f - g_1 - g_2$ maps to $[-4/9,4/9]$.

We continue in this way, and in the end, we get a sequence of functions (g_n) defined on X, and we define $g = \sum_n g_n$. By construction, this agrees with f on A (the difference will be less than $(2/3)^n$ for all n). The work remains in showing that the series defining g converges (compare to a geometric series) and that the resulting g is continuous (show that the series converges uniformly). See [Munkres, Thm 35.1] for more details.

Theorem 32.2 (Stone-Čech compactification). Suppose X is normal. There exists a “universal” compactification $\iota : X \rightarrow Y$ of X, such that if $j : X \rightarrow Z$ is any map to a compact Hausdorff space (for example a compactification), there is a unique map $q : Y \rightarrow Z$ with $q \circ \iota = j$.

Proof. Given the space X, let $\mathcal{F} = \{\text{cts } f : X \rightarrow [0,1]\}$. Define $\iota : X \rightarrow [0,1]^\mathcal{F}$ by $\iota(x) = f(x)$. This is continuous because each coordinate function is given by some $f \in \mathcal{F}$. The infinite cube is compact Hausdorff, and we let $Y = \overline{\iota(X)}$. It remains to show that ι is an embedding and also to demonstrate the universal property.

First, ι is injective by Urysohn’s lemma: given distinct points x and y in X, there is a Urysohn function separating x and y, so $\iota(x) \neq \iota(y)$.

Now suppose that $U \subseteq X$ is open. We wish to show that $\iota(U)$ is open in $\iota(X)$. Pick $x_0 \in U$. Again by Urysohn’s lemma, we have a function $g : X \rightarrow [0,1]$ with $g(x_0) = 0$ and $g \equiv 1$ outside of U. Let $B = \{\iota(x) \in \iota(X) \mid g(x) \neq 1\} = \iota(X) \cap p^{-1}_g([0,1])$.

Certainly $\iota(x_0) \in B$. Finally, $B \subset \iota(U)$ since if $\iota(x) \in B$, then $g(x) \neq 1$. But $g \equiv 1$ outside of U, so x must be in U.

33. Wed, Nov. 12
For the universal property, suppose that \(j : X \to Z \) is a map to a compact Hausdorff space. Then \(Z \) is also normal, and the argument above shows that it embeds inside some large cube \([0,1]^K\). For each \(k : Z \to [0,1] \) in \(K \), we thus get a coordinate map \(i_k = p_k \circ j : X \to [0,1] \), and it is clear how to extend this to get a map \(q_k : Y \to [0,1] \); just take \(q_k \) to be the projection map \(p_{i_k} \) onto the factor labelled by the map \(i_k \). Piecing these together gives a map \(q : Y \to [0,1]^K \), but it restricts to the map \(j \) on the subset \(X \). Since \(j \) has image in the closed subset \(Z \), it follows that \(q(Y) \subseteq Z \) since \(q \) is continuous and \(i(X) \) is dense in \(Y \). Note that \(q \) is the unique extension of \(j \) to \(Y \) since \(Z \) is Hausdorff and \(i(X) \) is dense in \(Y \).

Corollary 33.1. Suppose that \(X \) is normal, and that \(X \hookrightarrow Z \) is any compactification. Then \(Z \) is a quotient of the Stone-Čech compactification \(Y \) of \(X \).

Proof. According to the Theorem 32.2, we have a continuous map \(q : Y \to Z \) whose restriction to \(X \) is the given map \(j : X \to Z \). The map \(q \) is closed since \(Y \) is compact and \(Z \) is Hausdorff. Also, \(j(X) \) is dense in \(Z \), and \(j(X) = q(\iota(X)) \subseteq q(Y) \) so \(q(Y) = Z \). In other words, \(q \) is closed, continuous, and surjective, therefore it is a quotient map.

The Stone-Čech compactification has consequences for *metrizability* of a space. Consider first the case that the index set \(J \) is countable.

Proposition 33.2. Let \(Y \) be a metric space, and let \(\overline{d} : Y \times Y \to \mathbb{R} \) be the associated truncated metric. Then the formula

\[
D(y, z) = \sup \left\{ \frac{\overline{d}(y_n, z_n)}{n} \right\}
\]

defines a metric on \(Y^\mathbb{N} \), and the induced topology is the product topology.

Proof. We leave as an exercise the verification that this is a metric. We check the statement about the topology. For each \(n \), let \(p_n : Y^\mathbb{N} \to Y \) be evaluation in the \(n \)th place. This is continuous, as given \(y \in Y^\mathbb{N} \) and \(\epsilon > 0 \), we let \(\delta = \epsilon/n \). Then if \(D(y, z) < \delta \), it follows that

\[
d(y_n, z_n) = n \frac{d(y_n, z_n)}{n} \leq nD(y, z) < n\delta = \epsilon.
\]

By the universal property of the product, we get a continuous bijection \(p : Y^\mathbb{N} \to \prod_{\mathbb{N}} Y \).

It remains to show that \(p \) is open. Thus let \(B \subseteq Y^\mathbb{N} \) be an open ball, and let \(y \in p(B) = B \). We want to find a basis element \(U \) in the product topology with \(y \in U \subseteq B \). For convenience, we replace \(B \) by \(B_\epsilon(y) \) for small enough \(\epsilon \). Take \(N \) large such that \(1/N < \epsilon \). Then define

\[
U = \bigcap_{i=1}^N p_i^{-1}(B_\epsilon(y_i)).
\]

Let \(z \in Y^\mathbb{N} \). Recall that we have truncated our metric on \(Y \) at \(1 \). Thus if \(n > N \), we have that \(\overline{d}(y_n, z_n)/n \leq 1/n \leq 1/N < \epsilon \). It follows that for any \(z \in U \), we have \(z \in B_\epsilon(x) \) as desired.

34. Fri, Nov. 14

On the other hand, if \(J \) is uncountable, then \([0,1]^J\) need not be metric, as the following example shows.

Example 34.1. The sequence lemma fails in \(\mathbb{R}^\mathbb{R} \). Let \(A \subseteq \mathbb{R}^\mathbb{R} \) be the subset consisting of functions that zero at all but finitely many points. Let \(g \) be the constant function at \(1 \). Then \(g \in \overline{A} \), since if

\[
U = \bigcap_{x_1, \ldots, x_k} p_{x_1}^{-1}(a_i, b_i)
\]
is a neighborhood of \(g \), then the function

\[
f(x) = \begin{cases}
1 & x \in \{x_1, \ldots, x_k\} \\
0 & \text{else}
\end{cases}
\]

is in \(U \cap A \). But no sequence in \(A \) can converge to \(g \) (recall that convergence in the product topology means pointwise convergence). For suppose \(f_n \) is a sequence in \(A \). For each \(n \), let \(Z_n = \text{supp}(f_n) \) (the support is the set where \(f_n \) is nonzero). Then the set

\[
Z = \bigcup_n Z_n
\]

is countable, and on the complement of \(Z \), all \(f_n \)'s are zero. So it follows that the same must be true for any limit of \(f_n \). Thus the \(f_n \) cannot converge to \(g \).

This finally leads to a characterization of those topological spaces which come from metric spaces.

Theorem 34.2. If \(X \) is normal and second countable, then it is metrizable.

Proof. Since \(X \) is normal, we can embed \(X \) as above inside a cube \([0,1]^J \) for some \(J \). Above, we took \(J \) to be the collection of all functions \(X \rightarrow [0,1] \).

To get a countable indexing set \(J \), start with a countable basis \(B = \{B_n\} \) for \(X \). For each pair of indices \(n, m \) for which \(\overline{B}_n \subset B_m \), the Urysohn lemma gives us a function \(g_{n,m} \) vanishing on \(B_n \) and equal to 1 outside \(B_m \). We take \(J = \{g_{n,m}\} \). Going back to the proof of the Stone-Čech-compactification, we needed, for any \(x_0 \in X \) and \(x_0 \in U \), to be able to find a function vanishing at \(x_0 \) but equal to 1 outside of \(U \).

Take a basis element \(B_m \) satisfying \(x_0 \in B_m \subset U \). Since \(X \) is normal, we can find an open set \(V \) with \(x_0 \in V \subset \overline{V} \subset B_m \). Find a \(B_n \) inside of \(V \), and we are now done: namely, the function \(g_{n,m} \) is what we were after.

We now come back to a result that we previously put off.

Theorem 34.3. Suppose \(X \) is locally compact, Hausdorff, and second-countable. Then \(X \) is normal.

Proof. Given closed, disjoint subsets \(A \) and \(B \), we want to separate them using disjoint open sets.

Consider first the case where \(A = \{a\} \) is a point. Writing \(V = X \setminus B \), we have \(a \in V \), and we wish to find \(U \) with \(a \in U \subset \overline{U} \subset V \). Since \(X \) is locally compact, Hausdorff, we can consider the one-point compactification \(\hat{X} \). But now we have \(a \in V \subset \hat{X} \), and \(\hat{X} \) is compact Hausdorff and therefore normal. So we get the desired \(U \). Note that the same argument does not work for a general \(A \), since we would not know that \(A \) is closed in \(\hat{X} \) (unless \(A \) is compact). We have proved that \(X \) is regular \((T_3)\).

Now let \(A \) and \(B \) be general closed, disjoint subsets. For each \(a \in A \), we can find a basis element \(U_a \) with \(a \in U_a \subset \overline{U}_a \subset X \setminus B \). Since our basis is countable, we can enumerate all such \(U_a \)'s to get a countable cover \(\{U_n\} \) of \(A \) which is disjoint from \(B \). Similarly, we get a countable cover \(\{V_n\} \) of \(B \) which is disjoint from \(A \). But the \(U_n \)'s need not be disjoint from the \(V_k \)'s so we need to fix this.

Define new covers of \(A \) and \(B \), respectively, as follows. For each \(n \), define

\[
\tilde{U}_n = U_n \setminus \bigcup_{j=1}^n V_j \quad \text{and} \quad \tilde{V}_n = V_n \setminus \bigcup_{j=1}^n U_j
\]

The \(\tilde{U}_n \)'s still cover \(A \) because we have removed the \(V_j \), which were all disjoint from \(A \). Similarly, the \(\tilde{V}_n \) cover \(B \). Moreover, \(\tilde{U}_n \) is disjoint from \(\tilde{V}_j \) because, assuming WLOG that \(n < j \), the closure of \(U_n \) has been removed from \(V_j \) in the formation of \(V_j \).

Combining the previous results gives
Corollary 34.4. Suppose X is locally compact, Hausdorff, and second-countable. Then X is metrizable.