
35. Monday, Nov. 17

Exam day.

36. Wednesday, Nov. 19

We finally arrive at one of the most important definitions of the course.

Definition 36.1. A (topological) n-manifold M is a Hausdor↵, second-countable space such that
each point has a neighborhood homeomorphic to an open subset of Rn.

Example 36.2. (1) Rn and any open subset is obviously an n-manifold

(2) S1 is a 1-manifold. More generally, Sn is an n-manifold. Indeed, we have shown that if you
remove a point from Sn, the resulting space is homeomorphic to Rn.

(3) Tn, the n-torus, is an n-manifold. In general, if M is an m-manifold and N is an n-manifold,
then M ⇥N is an (m+ n)-manifold.

(4) RPn is an n-manifold. There is a standard covering of RPn by open sets as follows. Recall
that RPn = (Rn+1\{0})/R⇥. For each 1  i  n+1, let V

i

✓ Rn+1\{0} be the complement
of the hyperplane x

i

= 0. This is an open, saturated set, and so its image U
i

= V
i

/R⇥ ✓ RPn

is open. The V
i

’s cover Rn+1 \ {0}, so the U
i

’s cover RPn. We leave the rest of the details
as an exercise.

(5) CPn is a 2n-manifold. This is similar to the description given above.

(6) O(n) is a n(n�1)

2

-manifold. Since it is also a topological group, this makes it a Lie group.
The standard way to see that this is a manifold is to realize the orthogonal group as the
preimage of the identity matrix under the transformation M

n

(R) �! M
n

(R) that sends A
to ATA. This map lands in the subspace S

n

(R) of symmetric n ⇥ n matrices. This space
can be identified with Rn(n+1)/2.

Now the n⇥n identity matrix is an element of S
n

, and an important result in di↵erential
topology (Sard’s theorem) that says that if a certain derivative map is surjective, then the
preimage of the submanifold {I

n

} will be a submanifold of M
n

(R) of the same “codimen-
sion”. in this case, the relevant derivative is the matrix of partial derivatives of A 7! ATA,
writen in a suitable basis. It follows that

dimO(n) = n2 � n(n+ 1)

2
=

n(n� 1)

2
.

The dimension statement can also be seen directly as follows. If A is an orthogonal matrix,
its first column is just a point of Sn�1. Then its second column is a point on the sphere
orthogonal to the first column, so it lives in an “equator”, meaning a sphere of dimension
one less. Continuing in this way, we see that the “degree of freedom” for specifying a point
of O(n) is (n� 1) + (n� 2) + · · ·+ 1 = n(n�1)

2

.
(7) Gr

k,n

(R) is a k(n� k)-manifold. One way to see this is to use the homeomorphism

Gr
k,n

(R) ⇠= O(n)/
�

O(k)⇥O(n� k)
�
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from Example 18.1. We get

dimGr
n,k

(R) = dimO(n)�
�

dimO(k) + dimO(n� k)
�

=
n�1

X

j=1

j �

0

@

k�1

X

j=1

j +
n�k�1

X

`=1

`

1

A =
n�1

X

j=k

j �
n�k�1

X

`=1

`

=
n�k�1

X

`=0

k + `�
n�k�1

X

`=0

` =
n�k�1

X

`=0

k = k(n� k)

Here are some nonexamples of manifolds.

Example 36.3. (1) The union of the coordinate axes in R2. Every point has a neighborhood
like R1 except for the origin.

(2) A discrete uncountable set is not second countable.
(3) A 0-manifold is discrete, so Q is not a 0-manifold.
(4) Glue together two copies of R by identifying any nonzero x in one copy with the point x in

the other. This is second-countable and looks locally like R1, but it is not Hausdor↵.

37. Fri, Nov. 21

Proposition 37.1. Any manifold is normal.

Proof. This follows form Theorem 34.3. To see that a manifold M is locally compact, consider a
point x 2 M . Then x has a Euclidean neighborhood x 2 U ✓ M . U is homeomorphic to an open
subset V of Rn, so we can find a compact neighborhood K of x in V (think of a closed ball in Rn).
Under the homeomorphism, K corresponds to a compact neighborhood of x in U . ⌅

It also follows similarly that any manifold is metrizable, but we can do better. It is convenient
to introduce the following term.

Recall that the support of a continuous function f : X �! R is supp(f) = f�1(R \ {0}).

Definition 37.2. Let U = {U
1

, . . . U
n

} be a finite cover of X. A partition of unity subordinate
to U is a collection '

j

�! [0, 1] of continuous functions such that

(1) supp('
↵

) ✓ U
↵

(2) we have
P

j

'
j

= 1.

Theorem 37.3. Let U = {U
1

, . . . , U
n

} be a finite covering of the normal space X. Then there is
a partition of unity subordinate to U .

Lemma 37.4. Let U = {U
1

, . . . , U
n

} be a finite covering of the normal space X. Then there is a
finite cover V = {V

1

, . . . , V
n

} such that V
i

✓ V
i

✓ U
i

for all i.

Proof. We give only the argument in the case n = 2. Let A = X \ U
2

. Then A ✓ U
1

, so we can
find an open V

1

with A ✓ V
1

✓ V
1

✓ U
1

. Now {V
1

, U
2

} is an open cover of X. In the same way, we
replace U

2

be a V
2

with X \ V
1

✓ V
2

✓ V
2

✓ U
2

. ⌅

Proof of Theorem 37.3. We use the lemma twice, to get finite covers {V
1

, . . . , V
n

} and {W
1

, . . . ,W
n

}
with

W
i

✓ W
i

✓ V
i

✓ V
i

✓ U
i

for all i. For each i we have a Urysohn function g
i

: X �! [0, 1] with g
i

⌘ 1 on W
i

and vanishing
outside of V

i

. Note that this implies that supp(g
i

) ✓ V
i

✓ U
i

. Since the W
i

cover X, it follows that
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if we define G =
P

i

g
i

, then G(x) � 1 for all x. Thus '
i

= g
i

/G is a continuous function taking
values in [0, 1], and we get

X

i

'
i

=
X

i

g
i

G
=

P

i

g
i

P

i

g
i

= 1.

⌅
Theorem 37.5. Any manifold Mn admits an embedding into some Euclidean space RN .

Proof. The theorem is true as stated, but we only prove it in the case of a compact manifold.
Note that in this case, since M is compact and RN is Hausdor↵, it is enough to find a continuous
injection of M into some RN .

Since M is a manifold, it has an open cover by sets that are homeomorphic to Rn. Since it is
compact, there is a finite subcover {U

1

, . . . , U
k

}. By Theorem 37.3, there is a partition of unity

{'
1

, . . . ,'
k

} subordinate to this cover. For each i, let f
i

: U
i

⇠
=�! Rn be a homeomorphism. We can

then piece these together as follows: for each i = 1, . . . , k, define g
i

: M �! Rn by

g
i

(x) =

⇢

f
i

(x)'
i

(x) x 2 U
i

0 x 2 X \ supp('
i

)
.

Note that g
i

is continuous by the glueing lemma, since supp('
i

) is closed. Then the k functions g
i

together give a continuous function g : M �! Rnk. Unfortunately, this need not be injective, since
if f

i

(x) = 0 and x does not lie in any other U
j

, it follows that g(x) = 0. Since there can be more
than one such x, we cannot conclude that g is injective.

One way to fix this would be to stick on the functions '
i

, in order to separate out points lying
in di↵erent U

i

’s. Define G = (g
1

, . . . , g
k

,'
1

, . . . ,'
k

) : M �! Rnk+k. But now G is injective, since
if G(x) = G(x0) and we pick i so that '

i

(x) = '
i

(x0) > 0, then this means that x and x0 both
lie in U

i

. But then g
i

(x) = g
i

(x0) so f
i

(x) = f
i

(x0). Since f
i

is a homeomorphism, it follows that
x = x0. ⌅

In fact, one can do better. Munkres shows (Cor. 50.8) that every compact n-manifold embeds
inside R2n+1.
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38. Mon, Nov. 24

Last time, we discussed some of the nice properties of manifolds. Here is one more we did not
get to.

Proposition 38.1. Any manifold is locally path-connected.

This follows immediately since a manifold is locally Euclidean.

Another related concept is that of paracompactness. This is especially important in the theory
of manifolds and vector bundles. We make a couple of preliminary definitions first.

Definition 38.2. If U and W are collections of subsets of X, we say that W is a refinement of
U if every W 2 W is a subset of some U 2 U .

Definition 38.3. An open cover U of X is said to be locally finite if every x 2 X has a neigh-
borhood meeting only finitely many elements of the cover.

For example, the covering {(n, n+ 2) | n 2 Z} of R is locally finite.

Definition 38.4. A space X is said to be paracompact if every open cover has a locally finite
refinement.

From the definition, it is clear that compact implies paracompact. But this really is a general-
ization, as the next example shows.

Proposition 38.5. The space R is paracompact.

Proof. Let U be an open cover of R. For each n � 0, let A
n

= ±[n, n+1] and W
n

= ±(n� 1

2

, n+ 3

2

).
Then A

n

⇢ W
n

, A
n

is compact and W
n

is open. (We take W
0

= (�3

2

, 3
2

).) Fix an n. For each
x 2 A

n

, pick a U
x

2 U with x 2 U
x

, and let V
x

= U
x

\W
n

. The V
x

’s give an open cover of A
n

, and
so there is a finite collection V

n

of V
x

’s that will cover A
n

. Then V =
S

n

V
n

gives a locally finite
refinement of U . (Note that only W

n�1

, W
n

, and W
n+1

meet the subset A
n

). ⌅
This argument adapts easily to show that Rn is paracompact. In fact, something more general

is true.

Lemma 38.6. Any open cover of a second countable space has a countable subcover.

Proof. Given a countable basis B and an open cover U , we first replace the basis by the countable
subset B0 consisting of those basis elements that are entirely contained in some open set from the
cover (this is a basis too, but we don’t need that). For each B 2 B0, pick some U

B

2 U containing
B, and let U 0 ✓ U be the (countable) collection of such U

B

. It only remains to observe that U 0 is
still a cover, because

[

U 0

U
B

�
[

B0

B = X.

⌅
Proposition 38.7. Every second countable, locally compact Hausdor↵ space is paracompact.

The proof strategy is the same. The assumptions give you a cover (basis) by precompact sets
and thus a countable cover by precompact sets. You use this to manufacture a countable collection
of compact sets A

n

and open sets W
n

that cover X as above. The rest of the proof is the same.
Note that of the assumptions in the proposition, locally compact and Hausdor↵ are both local

properties, whereas second countable is a global property. As we will see, paracompactness (and
therefore the assumptions in this proposition) is enough to guarantee the existence of some nice
functions on a space.
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Corollary 38.8. Any manifold is paracompact.

Theorem 38.9 (Munkres, Theorem 41.4). If X is metric, then it is paracompact.

Next, we show that paracompact and Hausdor↵ implies normal. First, we need a lemma.

Lemma 38.10. If {A} is a locally finite collection of subsets of X, then
[

A =
[

A.

Proof. We have already shown before that the inclusion � holds generally. The other implication
follows from the neighborhood criterion for the closure. Let x 2

S

A. Then we can find a neighbor-
hood U of x meeting only A

1

, . . . , A
n

. Then x 2
S

n

i=1

A
i

since else there would be a neighborhood

V of x missing the A
i

’s. Then U\V would be a neighborhood missing
S

A. But
S

n

i=1

A
i

=
S

n

i=1

A
i

,
so we are done. ⌅
Theorem 38.11 (Lee, Theorem 4.81). If X is paracompact and Hausdor↵, then it is normal.

Proof. We first use the Hausdor↵ assumption to show that X is regular. A similar argument can
then be made, using regularity, to show normality.

Thus let A be closed and b /2 A. We wish to find disjoint open sets A ✓ U and b 2 V . For every
a 2 A, we can find disjoint open neighborhoods U

a

of a and V
a

of b. Then {U
a

} [ {X \ A} is an
open cover, so there is a locally finite subcover V. Take W ✓ V to be the W 2 V such that W ✓ U

a

for some a. Then W is still locally finite.
We take U =

S

W2W W and V = X \ U . We know b 2 V since U =
S

W , and b /2 W since
W ✓ U

a

and b has a neighborhood (V
a

) disjoint from U
a

. ⌅
Definition 38.12. Let U = {U

↵

} be a cover of X. A partition of unity subordinate to U is a
collection '

↵

: X �! [0, 1] of continuous functions such that

(1) supp('
↵

) ✓ U
↵

(2) the collection supp('
↵

) is locally finite
(3) we have

P

↵

'
↵

= 1. Note that, when evaluated at some x 2 X, this sum is always finite
by the local finite assumption (2).

Theorem 38.13. Let X be paracompact Hausdor↵, and let U = {U
↵

} be an open cover. Then
there exists a partition of unity subordinate to U .
Lemma 38.14 (Lee, 4.84). There exists a locally finite refinement {V

↵

} of {U
↵

} with V
↵

✓ U
↵

.

Proof of Theorem. We apply the lemma twice to get locally finite covers {V
↵

} and {W
↵

} with
W

↵

✓ V
↵

✓ V
↵

✓ U
↵

. For each ↵, we use Urysohn’s lemma to get f
↵

: X �! [0, 1] with f
↵

⌘ 1
on W

↵

and supp(f
↵

) ✓ V
↵

✓ U
↵

. Since {V
↵

} is locally finite, we can define f : X �! [0, 1] by
f =

P

↵

f
↵

. Locally around some x 2 X, the function f is a finite sum of f
↵

’s, and so is continuous.
It only remains to normalize our f

↵

’s. Note that at any x 2 X, we can find an ↵ for which x 2 W
↵

,
and so f(x) � f

↵

(x) = 1. Thus it makes sense to define '
↵

: X �! [0, 1] by

'
↵

(x) =
f
↵

(x)

f(x)
.

We have supp('
↵

) = supp(f
↵

), and so the '
↵

give a partition of unity. ⌅

metric +3 paracompact & Hausdor↵ +3 normal

locally compact, Hausdor↵,
& second-countable

+3

KS

normal &
second-countable

KSV^
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