Exam day.

## 36. Wednesday, Nov. 19

We finally arrive at one of the most important definitions of the course.

**Definition 36.1.** A (topological) *n*-manifold M is a Hausdorff, second-countable space such that each point has a neighborhood homeomorphic to an open subset of  $\mathbb{R}^n$ .

**Example 36.2.** (1)  $\mathbb{R}^n$  and any open subset is obviously an *n*-manifold

- (2)  $S^1$  is a 1-manifold. More generally,  $S^n$  is an *n*-manifold. Indeed, we have shown that if you remove a point from  $S^n$ , the resulting space is homeomorphic to  $\mathbb{R}^n$ .
- (3)  $T^n$ , the *n*-torus, is an *n*-manifold. In general, if M is an *m*-manifold and N is an *n*-manifold, then  $M \times N$  is an (m+n)-manifold.
- (4)  $\mathbb{RP}^n$  is an *n*-manifold. There is a standard covering of  $\mathbb{RP}^n$  by open sets as follows. Recall that  $\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\})/\mathbb{R}^{\times}$ . For each  $1 \leq i \leq n+1$ , let  $V_i \subseteq \mathbb{R}^{n+1} \setminus \{0\}$  be the complement of the hyperplane  $x_i = 0$ . This is an open, saturated set, and so its image  $U_i = V_i/\mathbb{R}^{\times} \subseteq \mathbb{RP}^n$  is open. The  $V_i$ 's cover  $\mathbb{R}^{n+1} \setminus \{0\}$ , so the  $U_i$ 's cover  $\mathbb{RP}^n$ . We leave the rest of the details as an exercise.
- (5)  $\mathbb{CP}^n$  is a 2*n*-manifold. This is similar to the description given above.
- (6) O(n) is a  $\frac{n(n-1)}{2}$ -manifold. Since it is also a topological group, this makes it a *Lie group*. The standard way to see that this is a manifold is to realize the orthogonal group as the preimage of the identity matrix under the transformation  $M_n(R) \longrightarrow M_n(R)$  that sends A to  $A^T A$ . This map lands in the subspace  $S_n(R)$  of symmetric  $n \times n$  matrices. This space can be identified with  $\mathbb{R}^{n(n+1)/2}$ .

Now the  $n \times n$  identity matrix is an element of  $S_n$ , and an important result in differential topology (Sard's theorem) that says that if a certain derivative map is surjective, then the preimage of the submanifold  $\{I_n\}$  will be a submanifold of  $M_n(\mathbb{R})$  of the same "codimension". in this case, the relevant derivative is the matrix of partial derivatives of  $A \mapsto A^T A$ , written in a suitable basis. It follows that

dim 
$$O(n) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}.$$

The dimension statement can also be seen directly as follows. If A is an orthogonal matrix, its first column is just a point of  $S^{n-1}$ . Then its second column is a point on the sphere orthogonal to the first column, so it lives in an "equator", meaning a sphere of dimension one less. Continuing in this way, we see that the "degree of freedom" for specifying a point of O(n) is  $(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}$ .

(7)  $\operatorname{Gr}_{k,n}(\mathbb{R})$  is a k(n-k)-manifold. One way to see this is to use the homeomorphism

$$\operatorname{Gr}_{k,n}(\mathbb{R}) \cong O(n)/(O(k) \times O(n-k))$$
  
57

from Example 18.1. We get

$$\dim \operatorname{Gr}_{n,k}(\mathbb{R}) = \dim O(n) - \left(\dim O(k) + \dim O(n-k)\right)$$
$$= \sum_{j=1}^{n-1} j - \left(\sum_{j=1}^{k-1} j + \sum_{\ell=1}^{n-k-1} \ell\right) = \sum_{j=k}^{n-1} j - \sum_{\ell=1}^{n-k-1} \ell$$
$$= \sum_{\ell=0}^{n-k-1} k + \ell - \sum_{\ell=0}^{n-k-1} \ell = \sum_{\ell=0}^{n-k-1} k = k(n-k)$$

Here are some nonexamples of manifolds.

- (1) The union of the coordinate axes in  $\mathbb{R}^2$ . Every point has a neighborhood Example 36.3. like  $\mathbb{R}^1$  except for the origin.
  - (2) A discrete uncountable set is not second countable.
  - (3) A 0-manifold is discrete, so  $\mathbb{Q}$  is not a 0-manifold.
  - (4) Glue together two copies of  $\mathbb{R}$  by identifying any nonzero x in one copy with the point x in the other. This is second-countable and looks locally like  $\mathbb{R}^1$ , but it is not Hausdorff.

## 37. Fri, Nov. 21

**Proposition 37.1.** Any manifold is normal.

*Proof.* This follows form Theorem 34.3. To see that a manifold M is locally compact, consider a point  $x \in M$ . Then x has a Euclidean neighborhood  $x \in U \subseteq M$ . U is homeomorphic to an open subset V of  $\mathbb{R}^n$ , so we can find a compact neighborhood K of x in V (think of a closed ball in  $\mathbb{R}^n$ ). Under the homeomorphism, K corresponds to a compact neighborhood of x in U.

It also follows similarly that any manifold is metrizable, but we can do better. It is convenient to introduce the following term.

Recall that the **support** of a continuous function  $f: X \longrightarrow \mathbb{R}$  is  $\operatorname{supp}(f) = \overline{f^{-1}(\mathbb{R} \setminus \{0\})}$ .

**Definition 37.2.** Let  $\mathcal{U} = \{U_1, \ldots, U_n\}$  be a finite cover of X. A partition of unity subordinate to  $\mathcal{U}$  is a collection  $\varphi_j \longrightarrow [0,1]$  of continuous functions such that

- (1)  $\operatorname{supp}(\varphi_{\alpha}) \subseteq U_{\alpha}$ (2) we have  $\sum_{j} \varphi_{j} = 1$ .

**Theorem 37.3.** Let  $\mathcal{U} = \{U_1, \ldots, U_n\}$  be a finite covering of the normal space X. Then there is a partition of unity subordinate to  $\mathcal{U}$ .

**Lemma 37.4.** Let  $\mathcal{U} = \{U_1, \ldots, U_n\}$  be a finite covering of the normal space X. Then there is a finite cover  $\mathcal{V} = \{V_1, \ldots, V_n\}$  such that  $V_i \subseteq \overline{V_i} \subseteq U_i$  for all *i*.

*Proof.* We give only the argument in the case n = 2. Let  $A = X \setminus U_2$ . Then  $A \subseteq U_1$ , so we can find an open  $V_1$  with  $A \subseteq V_1 \subseteq \overline{V_1} \subseteq U_1$ . Now  $\{V_1, U_2\}$  is an open cover of X. In the same way, we replace  $U_2$  be a  $V_2$  with  $X \setminus V_1 \subseteq V_2 \subseteq \overline{V_2} \subseteq U_2$ .

*Proof of Theorem 37.3.* We use the lemma twice, to get finite covers  $\{V_1, \ldots, V_n\}$  and  $\{W_1, \ldots, W_n\}$ with

$$W_i \subseteq W_i \subseteq V_i \subseteq V_i \subseteq U_i$$

for all i. For each i we have a Urysohn function  $g_i: X \longrightarrow [0,1]$  with  $g_i \equiv 1$  on  $\overline{W_i}$  and vanishing outside of  $V_i$ . Note that this implies that  $\operatorname{supp}(g_i) \subseteq \overline{V_i} \subseteq U_i$ . Since the  $W_i$  cover X, it follows that if we define  $G = \sum_i g_i$ , then  $G(x) \ge 1$  for all x. Thus  $\varphi_i = g_i/G$  is a continuous function taking values in [0, 1], and we get

$$\sum_{i} \varphi_i = \sum_{i} \frac{g_i}{G} = \frac{\sum_{i} g_i}{\sum_{i} g_i} = 1.$$

**Theorem 37.5.** Any manifold  $M^n$  admits an embedding into some Euclidean space  $\mathbb{R}^N$ .

*Proof.* The theorem is true as stated, but we only prove it in the case of a compact manifold. Note that in this case, since M is compact and  $\mathbb{R}^N$  is Hausdorff, it is enough to find a continuous injection of M into some  $\mathbb{R}^N$ .

Since M is a manifold, it has an open cover by sets that are homeomorphic to  $\mathbb{R}^n$ . Since it is compact, there is a finite subcover  $\{U_1, \ldots, U_k\}$ . By Theorem 37.3, there is a partition of unity  $\{\varphi_1, \ldots, \varphi_k\}$  subordinate to this cover. For each i, let  $f_i : U_i \xrightarrow{\cong} \mathbb{R}^n$  be a homeomorphism. We can then piece these together as follows: for each  $i = 1, \ldots, k$ , define  $g_i : M \longrightarrow \mathbb{R}^n$  by

$$g_i(x) = \begin{cases} f_i(x)\varphi_i(x) & x \in U_i \\ \mathbf{0} & x \in X \setminus \operatorname{supp}(\varphi_i) \end{cases}$$

Note that  $g_i$  is continuous by the glueing lemma, since  $\operatorname{supp}(\varphi_i)$  is closed. Then the k functions  $g_i$  together give a continuous function  $g: M \longrightarrow \mathbb{R}^{nk}$ . Unfortunately, this need not be injective, since if  $f_i(x) = \mathbf{0}$  and x does not lie in any other  $U_j$ , it follows that  $g(x) = \mathbf{0}$ . Since there can be more than one such x, we cannot conclude that g is injective.

One way to fix this would be to stick on the functions  $\varphi_i$ , in order to separate out points lying in different  $U_i$ 's. Define  $G = (g_1, \ldots, g_k, \varphi_1, \ldots, \varphi_k) : M \longrightarrow \mathbb{R}^{nk+k}$ . But now G is injective, since if G(x) = G(x') and we pick i so that  $\varphi_i(x) = \varphi_i(x') > 0$ , then this means that x and x' both lie in  $U_i$ . But then  $g_i(x) = g_i(x')$  so  $f_i(x) = f_i(x')$ . Since  $f_i$  is a homeomorphism, it follows that x = x'.

In fact, one can do better. Munkres shows (Cor. 50.8) that every compact *n*-manifold embeds inside  $\mathbb{R}^{2n+1}$ .

## 38. Mon, Nov. 24

Last time, we discussed some of the nice properties of manifolds. Here is one more we did not get to.

## **Proposition 38.1.** Any manifold is locally path-connected.

This follows immediately since a manifold is locally Euclidean.

Another related concept is that of paracompactness. This is especially important in the theory of manifolds and vector bundles. We make a couple of preliminary definitions first.

**Definition 38.2.** If  $\mathcal{U}$  and  $\mathcal{W}$  are collections of subsets of X, we say that  $\mathcal{W}$  is a **refinement** of  $\mathcal{U}$  if every  $W \in \mathcal{W}$  is a subset of some  $U \in \mathcal{U}$ .

**Definition 38.3.** An open cover  $\mathcal{U}$  of X is said to be **locally finite** if every  $x \in X$  has a neighborhood meeting only finitely many elements of the cover.

For example, the covering  $\{(n, n+2) \mid n \in \mathbb{Z}\}$  of  $\mathbb{R}$  is locally finite.

**Definition 38.4.** A space X is said to be **paracompact** if every open cover has a locally finite refinement.

From the definition, it is clear that compact implies paracompact. But this really is a generalization, as the next example shows.

**Proposition 38.5.** The space  $\mathbb{R}$  is paracompact.

Proof. Let  $\mathcal{U}$  be an open cover of  $\mathbb{R}$ . For each  $n \geq 0$ , let  $A_n = \pm [n, n+1]$  and  $W_n = \pm (n - \frac{1}{2}, n + \frac{3}{2})$ . Then  $A_n \subset W_n$ ,  $A_n$  is compact and  $W_n$  is open. (We take  $W_0 = (-\frac{3}{2}, \frac{3}{2})$ .) Fix an n. For each  $x \in A_n$ , pick a  $U_x \in \mathcal{U}$  with  $x \in U_x$ , and let  $V_x = U_x \cap W_n$ . The  $V_x$ 's give an open cover of  $A_n$ , and so there is a finite collection  $\mathcal{V}_n$  of  $V_x$ 's that will cover  $A_n$ . Then  $\mathcal{V} = \bigcup_n \mathcal{V}_n$  gives a locally finite refinement of  $\mathcal{U}$ . (Note that only  $W_{n-1}$ ,  $W_n$ , and  $W_{n+1}$  meet the subset  $A_n$ ).

This argument adapts easily to show that  $\mathbb{R}^n$  is paracompact. In fact, something more general is true.

Lemma 38.6. Any open cover of a second countable space has a countable subcover.

*Proof.* Given a countable basis  $\mathcal{B}$  and an open cover  $\mathcal{U}$ , we first replace the basis by the countable subset  $\mathcal{B}'$  consisting of those basis elements that are entirely contained in some open set from the cover (this is a basis too, but we don't need that). For each  $B \in \mathcal{B}'$ , pick some  $U_B \in \mathcal{U}$  containing B, and let  $\mathcal{U}' \subseteq \mathcal{U}$  be the (countable) collection of such  $U_B$ . It only remains to observe that  $\mathcal{U}'$  is still a cover, because

$$\bigcup_{\mathcal{U}'} U_B \supset \bigcup_{\mathcal{B}'} B = X.$$

**Proposition 38.7.** Every second countable, locally compact Hausdorff space is paracompact.

The proof strategy is the same. The assumptions give you a cover (basis) by precompact sets and thus a countable cover by precompact sets. You use this to manufacture a countable collection of compact sets  $A_n$  and open sets  $W_n$  that cover X as above. The rest of the proof is the same.

Note that of the assumptions in the proposition, locally compact and Hausdorff are both *local* properties, whereas second countable is a global property. As we will see, paracompactness (and therefore the assumptions in this proposition) is enough to guarantee the existence of some nice functions on a space.

Corollary 38.8. Any manifold is paracompact.

**Theorem 38.9** (Munkres, Theorem 41.4). If X is metric, then it is paracompact.

Next, we show that paracompact and Hausdorff implies normal. First, we need a lemma.

**Lemma 38.10.** If  $\{A\}$  is a locally finite collection of subsets of X, then

$$\overline{\bigcup A} = \bigcup \overline{A}.$$

*Proof.* We have already shown before that the inclusion  $\supset$  holds generally. The other implication follows from the neighborhood criterion for the closure. Let  $x \in \bigcup A$ . Then we can find a neighborhood U of x meeting only  $A_1, \ldots, A_n$ . Then  $x \in \bigcup_{i=1}^n A_i$  since else there would be a neighborhood V of x missing the  $A_i$ 's. Then  $U \cap V$  would be a neighborhood missing  $\bigcup A$ . But  $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n \overline{A_i}$ , so we are done.

**Theorem 38.11** (Lee, Theorem 4.81). If X is paracompact and Hausdorff, then it is normal.

*Proof.* We first use the Hausdorff assumption to show that X is regular. A similar argument can then be made, using regularity, to show normality.

Thus let A be closed and  $b \notin A$ . We wish to find disjoint open sets  $A \subseteq U$  and  $b \in V$ . For every  $a \in A$ , we can find disjoint open neighborhoods  $U_a$  of a and  $V_a$  of b. Then  $\{U_a\} \cup \{X \setminus A\}$  is an open cover, so there is a locally finite subcover  $\mathcal{V}$ . Take  $\mathcal{W} \subseteq \mathcal{V}$  to be the  $W \in \mathcal{V}$  such that  $W \subseteq U_a$  for some a. Then  $\mathcal{W}$  is still locally finite.

We take  $U = \bigcup_{W \in \mathcal{W}} W$  and  $V = X \setminus \overline{U}$ . We know  $b \in V$  since  $\overline{U} = \bigcup \overline{W}$ , and  $b \notin \overline{W}$  since  $W \subseteq U_a$  and b has a neighborhood  $(V_a)$  disjoint from  $U_a$ .

**Definition 38.12.** Let  $\mathcal{U} = \{U_{\alpha}\}$  be a cover of X. A **partition of unity** subordinate to  $\mathcal{U}$  is a collection  $\varphi_{\alpha} : X \longrightarrow [0, 1]$  of continuous functions such that

- (1)  $\operatorname{supp}(\varphi_{\alpha}) \subseteq U_{\alpha}$
- (2) the collection  $\operatorname{supp}(\varphi_{\alpha})$  is locally finite
- (3) we have  $\sum_{\alpha} \varphi_{\alpha} = 1$ . Note that, when evaluated at some  $x \in X$ , this sum is always finite by the local finite assumption (2).

**Theorem 38.13.** Let X be paracompact Hausdorff, and let  $\mathcal{U} = \{U_{\alpha}\}$  be an open cover. Then there exists a partition of unity subordinate to  $\mathcal{U}$ .

**Lemma 38.14** (Lee, 4.84). There exists a locally finite refinement  $\{V_{\alpha}\}$  of  $\{U_{\alpha}\}$  with  $\overline{V_{\alpha}} \subseteq U_{\alpha}$ .

Proof of Theorem. We apply the lemma twice to get locally finite covers  $\{V_{\alpha}\}$  and  $\{W_{\alpha}\}$  with  $\overline{W_{\alpha}} \subseteq V_{\alpha} \subseteq \overline{V_{\alpha}} \subseteq U_{\alpha}$ . For each  $\alpha$ , we use Urysohn's lemma to get  $f_{\alpha} : X \longrightarrow [0,1]$  with  $f_{\alpha} \equiv 1$  on  $\overline{W_{\alpha}}$  and  $\operatorname{supp}(f_{\alpha}) \subseteq \overline{V_{\alpha}} \subseteq U_{\alpha}$ . Since  $\{V_{\alpha}\}$  is locally finite, we can define  $f : X \longrightarrow [0,1]$  by  $f = \sum_{\alpha} f_{\alpha}$ . Locally around some  $x \in X$ , the function f is a finite sum of  $f_{\alpha}$ 's, and so is continuous. It only remains to normalize our  $f_{\alpha}$ 's. Note that at any  $x \in X$ , we can find an  $\alpha$  for which  $x \in W_{\alpha}$ , and so  $f(x) \geq f_{\alpha}(x) = 1$ . Thus it makes sense to define  $\varphi_{\alpha} : X \longrightarrow [0,1]$  by

$$\varphi_{\alpha}(x) = \frac{f_{\alpha}(x)}{f(x)}.$$

We have  $\operatorname{supp}(\varphi_{\alpha}) = \operatorname{supp}(f_{\alpha})$ , and so the  $\varphi_{\alpha}$  give a partition of unity.

