1. Let
\[0 \to A \to B \to C \to 0 \]
between abelian groups and \(D \) any abelian group.

(a) Show that the following sequence is exact:
\[0 \to \text{Hom}(D, A) \to \text{Hom}(D, B) \to \text{Hom}(D, C). \]

(b) Show that the following sequence is exact:
\[0 \to \text{Hom}(C, D) \to \text{Hom}(B, D) \to \text{Hom}(A, D). \]

2. (Ext and extensions). An **extension** of \(A \) by \(M \) is a short exact sequence
\[0 \to M \to E \to A \to 0. \]

An equivalence of extensions \(E \sim E' \) is a homomorphism \(E \to E' \) making
\[0 \to M \to E \to A \to 0 \]
commute. (Note that \(\rho \) is automatically an isomorphism by the 5-lemma.) Denote by \(\text{Exten}(A, M) \) the set of equivalence classes of extensions of \(A \) by \(M \).

(a) Construct a function \(\Phi : \text{Ext}(A, M) \to \text{Exten}(A, M) \) as follows. Starting from a class \(\alpha \in \text{Ext}(A, M) \) and a resolution \(F_\ast \) of \(A \), pick a representative \(F_1 \to M \) of \(\alpha \). Then consider the diagram
\[
\begin{array}{ccc}
0 & \to & F_1 \\
\downarrow f_1 & & \downarrow \\
0 & \to & M \\
\end{array}
\]
\[
\begin{array}{ccc}
& & E \\
\rho & \nearrow & \\
& & A \\
\end{array}
\]

(b) Construct a function \(\Lambda : \text{Exten}(A, M) \to \text{Ext}(A, M) \) as follows. Given an extension \(M \to E \to A \), consider the 6-term exact sequence arising from the functor \(\text{Hom}(_, M) \).

(c) Show that \(\Phi \) and \(\Lambda \) are inverse to each other.

3. An abelian group \(M \) is said to be \(p \)-divisible if \(M \to M \) (multiplication by \(p \)) is surjective. What does problem 2 tell you about extensions of \(\mathbb{Z}/p \) by a \(p \)-divisible abelian group \(M \)?