1. Given the Δ-complex structure on the Klein bottle K described in class, compute the homology groups $H^\Delta_*(K)$.

2. Let X be obtained from a simplex Δ^2 by identifying the three vertices to a single point. Compute the homology groups $H^\Delta_*(X)$.

3. Build S^3 as a Δ-complex, and use this to compute $H^\Delta_*(S^3)$.

4. Consider a ball B^3, obtained by gluing together three Δ^3’s along the edge $\{2, 3\}$ as in the picture to the right. Let X be the space obtained by the gluings $e_1 \sim f_2$, $e_2 \sim f_3$, and $e_3 \sim f_1$. In the picture, e_3 and f_3 are the “back” faces. Compute $H_*(X)$. (Hint: you should find that $H_1 \cong \mathbb{Z}/3$.)