1. Recall the functor $\text{Gl}_n : \text{Comm} \to \text{Gp}$ from HW1. When $n = 1$, this gives the functor $(-)^\times : \text{Comm} \to \text{Gp}$ which takes a commutative ring R and gives R^\times, the units (invertible elements) in R. Show that the determinant yields a natural transformation $\text{det} : \text{Gl}_n \to (-)^\times$.

2. Let G be a group. Define a category $\star G$ which has a single object, \star, and such that $\text{Hom}(\star, \star) = G$. The identity morphism and composition of morphisms are defined to be the identity element of the group and the group multiplication, respectively.

(a) Show that a G-set X is the same data as a functor $\mathcal{X} : \star G \to \text{Set}$.
(b) Show that if X and Y are G-sets, then a G-equivariant function $f : X \to Y$ corresponds precisely to a natural transformation of functors $\mathcal{X} \to \mathcal{Y}$.

3. Let $\mathcal{J} = \{ \bullet \to \bullet \}$ be the category with two objects and a single non-identity morphism. Describe the data involved in a natural transformation $\eta : F \Rightarrow G : \mathcal{J} \to \mathcal{C}$.

4. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. Let $G : \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{D})$ be a function, and suppose given an isomorphism $\eta_C : F(C) \cong G(C)$ for each $C \in \mathcal{C}$. Show that there is a unique way to define G on morphisms of \mathcal{C} that makes $\{ \eta_C \}$ a natural isomorphism.