Math 654 - Algebraic Topology Homework 7 Fall 2015

1. In the commutative diagram below, assume that f_2 and f_4 are surjective, while f_5 is injective.

$$A_{1} \xrightarrow{g_{1}} A_{2} \xrightarrow{g_{2}} A_{3} \xrightarrow{g_{3}} A_{4} \xrightarrow{g_{4}} A_{5}$$

$$f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow \qquad f_{4} \downarrow \qquad f_{5} \downarrow$$

$$B_{1} \xrightarrow{h_{1}} B_{2} \xrightarrow{h_{2}} B_{3} \xrightarrow{h_{3}} B_{4} \xrightarrow{h_{4}} B_{5}$$

Show that f_3 is surjective.

2. Let $h_*(-,-)$ be a homology theory. For any excisive triad (X;A,B), we have the map of long exact sequences

$$\dots \longrightarrow H_n(A \cap B) \xrightarrow{j_B} H_n(B) \xrightarrow{q_B} H_n(B, A \cap B) \xrightarrow{\delta} H_{n-1}(A \cap B) \longrightarrow$$

$$\downarrow j_A \downarrow \qquad \qquad \downarrow i_B \qquad \qquad \downarrow \cong \qquad \qquad \downarrow$$

$$\dots \longrightarrow H_n(A) \xrightarrow{i_A} H_n(X) \xrightarrow{q_X} H_n(X, A) \xrightarrow{\delta} H_{n-1}(A) \longrightarrow$$

Use (only) this to build the Mayer-Vietoris sequence

$$\dots \longrightarrow H_n(A \cap B) \xrightarrow{(j_A,j_B)} H_n(A) \oplus H_n(B) \xrightarrow{i_A-i_B} H_n(X) \xrightarrow{\delta} H_{n-1}(A \cap B) \longrightarrow \dots$$

3. Show that if $A \subseteq X$ is a based subspace, then there is a long exact sequence

$$\ldots \longrightarrow \widetilde{H}_n(A) \longrightarrow \widetilde{H}_n(X) \longrightarrow H_n(X,A) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \ldots$$

4. Show that if

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

is a short exact sequence of finitely generated abelian groups and D is any abelian group, then the sequence

$$D \otimes A \longrightarrow D \otimes B \longrightarrow D \otimes C \longrightarrow 0$$

is exact.