Math 551 - Topology I Homework 2 Fall 2017

- 1. Let (X, d) be a metric space and consider $X \times X$, equipped with the max metric. Show that $d : X \times X \longrightarrow \mathbb{R}$ is continuous.
- 2. Let *X*, *Y*, and *Z* be metric spaces. Show that if $\widehat{\varphi} : X \longrightarrow C(Y, Z)$ is continuous then $\varphi : X \times Y \longrightarrow Z$ is continuous. (The other implication is not always true.)
- 3. (a) (The cofinite topology) Let *X* be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is finite. Show that this defines a topology on *X*.
 - (b) (The cocountable topology) Let *X* be an infinite set. Define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is countable. Show that this defines a topology on *X*.
 - (c) In the case $X = \mathbb{R}$, how do these relate to each other and to the usual topology ?
- 4. (a) (Generic point topology) Let *X* be a set, and fix a special point $x_0 \in X$. Declare a nonempty subset $U \subseteq X$ to be open in *X* if and only if $x_0 \in U$. Show that this gives a topology on *X*.
 - (b) (Excluded point topology) Let *X* be a set, and fix a special point $x_0 \in X$. Declare a proper subset $U \subset X$ to be open if and only if $x_0 \notin U$. Show that this gives a topology on *X*.
- 5. (Vertical interval topology) Define \mathcal{B} to be the collection of vertical open intervals in \mathbb{R}^2 , namely, sets of the form

$$\{a\} \times (b,c) = \{(a,x) \mid b < x < c\}$$

for fixed *a*, *b*, *c*. (Beware that in the left-hand side of the equation, (b, c) means the open interval in \mathbb{R} , whereas in the right-hand side, (a, x) means the point of \mathbb{R}^2 .) Show that this defines a basis for a topology on \mathbb{R}^2 . How is this topology related to the standard topology?