Math 551 - Topology I Homework 5 Fall 2017

1. Show that a space *X* is Hausdorff if and only if the diagonal subset

$$\Delta(X) = \{(x, x)\} \subseteq X \times X$$

is closed.

- 2. (a) Show that for any two spaces *X* and *Y*, the projection map $p_X : X \times Y \longrightarrow X$ is *open*.
 - (b) Find an example to show that the projection p_X need not be closed.
- 3. Recall that if *A* is a set and we have $X_{\alpha} = X$ for each $\alpha \in A$, then the product $\prod_{\alpha} X_{\alpha}$ can be identified with the collection of functions $f : A \longrightarrow X$. Consider this as a space with the product topology. Show that $(f_n) \rightarrow f$ in this topology if and only if the functions converge to *f* pointwise.
- 4. Let $\mathcal{Z} \subseteq \mathbb{R}^{\mathbb{N}}$ be the subset consisting of sequences which are eventually zero (in other words, only finitely many of the entries are nonzero). Find the closure of \mathcal{Z} in $\mathbb{R}^{\mathbb{N}}$ under the box and product topologies
- 5. Let $A_j \subseteq X_j$ be a subspace for each $j \in J$. Show that the subspace topology on

$$\prod_{j\in J} A_j \subseteq \prod_{j\in J} X_j$$

coincides with the product topology (here $\prod_{j \in J} X_j$ is equipped with the product topology).