Math 551 - Topology I Homework 6 Fall 2017

- 1. Suppose that $(g, x) \mapsto g \cdot x$ is a left action of *G* on *X*. Show that the assignment $(x, g) \mapsto g^{-1} \cdot x$ defines a right action of *G* on *X*.
- 2. Let *X* be a set. For any natural number *n*, let Σ_n denote the symmetric group on *n* letters.
 - (a) Show that the assignment $(x_i) \mapsto (x_{\sigma(i)})$ defines a right action of Σ_n on X^n . (Hint: One way to think about X^n is as the set of functions $\mathbf{n} \longrightarrow X$, where $\mathbf{n} = \{1, ..., n\}$.)
 - (b) Describe the quotient $X^n \longrightarrow X^n / \Sigma_n$
 - (c) Let $C_n \leq \Sigma_n$ be the cyclic subgroup of size *n* generated by the *n*-cycle $(12 \cdots n)$. Describe the quotient $X^n \longrightarrow X^n/C_n$.
- 3. Let *G* be a topological group and $H \leq G$ a subgroup. Show that the closure $\overline{H} \subseteq G$ is a subgroup.
- 4. Let *G* be a topological group acting on the space *X*. Show that the quotient map $X \longrightarrow X/G$ is an open map.
- 5. (a) Show that the action of $Gl_n(\mathbb{R})$ on \mathbb{R}^n discussed in class restricts to an action of the orthogonal group O(n) on S^{n-1} .
 - (b) Show that the orbit space of O(n) acting on ℝⁿ is [0,∞), equipped with its standard metric topology.