Math 551 - Topology I Homework 7 Fall 2017

- 1. Let *G* and *H* be groups and let *X* be a set.
 - (a) Show that an action of $G \times H$ on X corresponds to a commuting pair of G and H-actions on X. (Commuting means that $g \cdot (h \cdot x) = h \cdot (g \cdot x)$.)
 - (b) Show that an action of $G \times H$ on X gives rise to an action of G on X/H.
 - (c) Suppose that *X* is a set with a $G \times H$ -action. Show that $X/(G \times H) \cong (X/G)/H$.
- 2. Consider the O(n)-action described in class on the set of *k*-dimensional subspaces of \mathbb{R}^n . Show that this restricts to a transitive action of the subgroup SO(n). What is the stabilizer of the point $E_k = \text{Span}\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$?
- 3. Let $k \leq n$ be natural numbers. A *k*-frame in \mathbb{R}^n is a collection of *k* linearly independent vectors. Denote by $\operatorname{Fr}_k(\mathbb{R}^n)$ the set of *k*-frames in \mathbb{R}^n .
 - (a) Show that $Gl_n(\mathbb{R})$ acts transitively on $Fr_k(\mathbb{R}^n)$.
 - (b) What is the stabilizer of $\{\mathbf{e}_1, \ldots, \mathbf{e}_k\}$?
- 4. Let $k \leq n$ be natural numbers. An **orthonormal** *k*-frame in \mathbb{R}^n is an ordered orthonormal set of *k* (necessarily linearly independent) vectors. Denote by $OFr_k(\mathbb{R}^n)$ the set of orthonormal *k*-frames in \mathbb{R}^n .
 - (a) Show that O(n) acts transitively on $OFr_k(\mathbb{R}^n)$.
 - (b) What is the stabilizer of $\{\mathbf{e}_1, \ldots, \mathbf{e}_k\}$?
 - (c) (**Optional**) Show that the function sending an orthonormal frame to the subspace it spans defines a topological quotient map $OFr_k(\mathbb{R}^n) \longrightarrow Gr_k(\mathbb{R}^n)$.
- 5. (Topologist's sine curve) Let $\Gamma \subseteq \mathbb{R}^2$ be the graph of $\sin(1/x)$ for $0 < x \le 1/\pi$. Show that the closure $\overline{\Gamma}$ is connected but not path-connected.