Math 551 - Topology I Homework 7
 Fall 2017

1. Let G and H be groups and let X be a set.
(a) Show that an action of $G \times H$ on X corresponds to a commuting pair of G and $H-$ actions on X. (Commuting means that $g \cdot(h \cdot x)=h \cdot(g \cdot x)$.)
(b) Show that an action of $G \times H$ on X gives rise to an action of G on X / H.
(c) Suppose that X is a set with a $G \times H$-action. Show that $X /(G \times H) \cong(X / G) / H$.
2. Consider the $O(n)$-action described in class on the set of k-dimensional subspaces of \mathbb{R}^{n}. Show that this restricts to a transitive action of the subgroup $S O(n)$. What is the stabilizer of the point $E_{k}=\operatorname{Span}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}$?
3. Let $k \leq n$ be natural numbers. A k-frame in \mathbb{R}^{n} is a collection of k linearly independent vectors. Denote by $\operatorname{Fr}_{k}\left(\mathbb{R}^{n}\right)$ the set of k-frames in \mathbb{R}^{n}.
(a) Show that $G l_{n}(\mathbb{R})$ acts transitively on $\mathrm{Fr}_{k}\left(\mathbb{R}^{n}\right)$.
(b) What is the stabilizer of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}$?
4. Let $k \leq n$ be natural numbers. An orthonormal k-frame in \mathbb{R}^{n} is an ordered orthonormal set of k (necessarily linearly independent) vectors. Denote by $\operatorname{OFr}_{k}\left(\mathbb{R}^{n}\right)$ the set of orthonormal k-frames in \mathbb{R}^{n}.
(a) Show that $O(n)$ acts transitively on $\operatorname{OFr}_{k}\left(\mathbb{R}^{n}\right)$.
(b) What is the stabilizer of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}$?
(c) (Optional) Show that the function sending an orthonormal frame to the subspace it spans defines a topological quotient map $\operatorname{OFr}_{k}\left(\mathbb{R}^{n}\right) \longrightarrow \mathrm{Gr}_{k}\left(\mathbb{R}^{n}\right)$.
5. (Topologist's sine curve) Let $\Gamma \subseteq \mathbb{R}^{2}$ be the graph of $\sin (1 / x)$ for $0<x \leq 1 / \pi$. Show that the closure $\bar{\Gamma}$ is connected but not path-connected.
