Math 551 - Topology I Homework 9 Fall 2017

- 1. (a) Find an example of a bijective continuous map $f : X \longrightarrow Y$, where X is locally compact but Y is not.
 - (b) Show that if $f : X \longrightarrow Y$ is a continuous, open surjection and X is locally compact, then Y must be locally compact.
- 2. Let $X = (\mathbb{R} \times \mathbb{Z})/\sim$, where \sim is the equivalence relation generated by $(x, n) \sim (x, k)$ for all $n, k \in \mathbb{Z}$ and $x \neq 0$. Show that *X* is locally compact but does not have a basis of precompact open sets.
- 3. Suppose that *Y* is locally compact Hausdorff. Let $K \subseteq U \subset Y$ with *K* compact and *U* open. Show that there is a precompact open set *V* with

$$K \subseteq V \subseteq \overline{V} \subseteq U.$$

- 4. (Stereographic Projection) Let $N = (0, ..., 0, 1) \in S^n$ be the North Pole. Define a homeomorphism $S^n \setminus \{N\} \cong \mathbb{R}^n$ as follows. For each $x \neq N \in S^n$, consider the ray starting at N and passing through x. This meets the equatorial hyperplane (defined by $x_{n+1} = 0$) in a point, which we call p(x).
 - (a) Determine a formula for *p* and show that it gives a homeomorphism.
 - (b) Conclude that the one-point compactification of \mathbb{R}^n is S^n .
- 5. A map $f : X \longrightarrow Y$ is said to be **proper** if, for any compact subset $K \subseteq Y$, the preimage $f^{-1}(K) \subseteq X$ is compact.
 - (a) Show that if *X* is compact and *Y* is Hausdorff, then any continuous $f : X \longrightarrow Y$ is automatically proper.
 - (b) Let *X* and *Y* be locally compact and Hausdorff. Show that a continuous map $f : X \longrightarrow Y$ is proper if and only if it extends to a continuous map $\hat{f} : \hat{X} \longrightarrow \hat{Y}$ with $\hat{f}(\infty_X) = \infty_Y$.