16.1. **Path Connectedness.** Ok, so we have looked at examples and studied this notion of being connected, but if you asked your calculus students to describe what it should mean for a subset of \mathbb{R} to be connected, they probably wouldn’t come up with the “no nontrivial clopen subsets” idea. Instead, they would probably say something about being able to connect-the-dots. In other words, you should be able to draw a line from one point to another while staying in the subset. This leads to the following idea.

Definition 16.12. We say that $A \subseteq X$ is **path-connected** if for every pair a, b of points in A, there is a continuous function (a path) $\gamma : I \rightarrow A$ with $\gamma(0) = a$ and $\gamma(1) = b$.

This is not unrelated to the earlier notion.

Proposition 16.13. If $A \subseteq X$ is path-connected, then it is also connected.

Proof. Pick a point $a_0 \in A$. For any other $b \in A$, we have a path γ_b in A from a_0 to b. Then the image $\gamma_b(I)$ is a connected subset of A containing both a_0 and b. It follows that

$$A = \bigcup_{b \in A} \gamma_b(I)$$

is connected, as it is the overlapping union of connected sets.

For subsets $A \subseteq \mathbb{R}$, we have

$$A \text{ is path-connected} \Rightarrow A \text{ is connected} \iff A \text{ is an interval} \Rightarrow A \text{ is path-connected}.$$

So the two notions coincide for subsets of \mathbb{R}. But the same is not true in \mathbb{R}^2! (The topologist’s sine curve, HW 7).

Path-connectedness has much the same behavior as connectedness.

Proposition 16.14.

1. Images of path-connected spaces are path-connected
2. Overlapping unions of path-connected spaces are path-connected
3. Finite products of path-connected spaces are path-connected

However, the topologist’s sine curve shows that closures of path-connected subsets need not be path-connected.

Our proof of connectivity of $\prod_i X_i$ last time used this closure property for connected sets, so the earlier argument does not adapt easily to path-connectedness. But it turns out to be easier to prove.

Theorem 16.15. Assume $X_i \neq \emptyset$ for all $i \in I$, where is I is arbitrary. Then $\prod_i X_i$ is path-connected if and only if each X_i is path-connected.

Proof. The interesting direction is (\Leftarrow). Thus assume that each X_i is path-connected. Let (x_i) and (y_i) be points in the product $\prod_i X_i$. Then for each $i \in I$ there is a path γ_i in X_i with $\gamma_i(0) = x_i$ and $\gamma_i(1) = y_i$. By the universal property of the product, we get a continuous path

$$\gamma = (\gamma_i) : [0, 1] \to \prod_i X_i$$

with $\gamma(0) = (x_i)$ and $\gamma(1) = (y_i)$.

\textbf{\[40\]}
16.2. Components. The overlapping union property for (path-)connectedness allows us to make the following definition.

Definition 16.16. Let \(x \in X \). We define the **connected component** (or simply component) of \(x \) in \(X \) to be

\[
C_x = \bigcup_{C \text{ connected}} C.
\]

Similarly, the **path-component** of \(X \) is defined to be

\[
PC_x = \bigcup_{P \text{ connected}} P.
\]

The overlapping union property guarantees that \(C_x \) is connected and that \(PC_x \) is path-connected. Since path-connected sets are connected, it follows that for any \(x \), we have \(PC_x \subseteq C_x \). An immediate consequence of the above definition(s) is that any (path-)connected subset of \(X \) is contained in some (path-)component.

Example 16.17. Consider \(\mathbb{Q} \), equipped with the subspace topology from \(\mathbb{R} \). Then the only connected subsets are the singletons, so \(C_x = \{x\} \). Such a space is said to be **totally disconnected**.

Note that for any space \(X \), each component \(C_x \) is closed as \(\overline{C_x} \) is a connected subset containing \(x \), which implies \(\overline{C_x} \subseteq C_x \). If \(X \) has finitely many components, then each component is the complement of the finite union of the remaining components, so each component is also open, and \(X \) decomposes as a disjoint union

\[
X \cong C_1 \sqcup C_2 \sqcup \cdots \sqcup C_n
\]

of its components. But this does not happen in general, as the previous example shows.

The situation is worse for path-components: they need not be open or closed, as the topologist’s sine curve shows.

16.3. Locally (Path-)Connected.

Definition 16.18. Let \(X \) be a space. We say that \(X \) is **locally connected** if any neighborhood \(U \) of any point \(x \) contains a connected neighborhood \(\overline{B} \subseteq U \). Similarly \(X \) is **locally path-connected** if any neighborhood \(U \) of any point \(x \) contains a path-connected neighborhood \(\overline{B} \subseteq U \).

The locally path-connected turns out to show up more often, so we focus on that.

Proposition 16.19. Let \(X \) be a space. The following are equivalent.

1. \(X \) is locally path-connected
2. \(X \) has a basis consisting of path-connected open sets
3. for every open set \(U \subseteq X \), the path-components of \(U \) are open in \(X \)
4. for every open set \(U \subseteq X \), every component of \(U \) is path-connected and open in \(X \).

Proof. We leave the implications \((1) \iff (2) \iff (3) \) as an exercise. We argue for \((1) \iff (4) \).

Assume \(X \) is locally path-connected, and let \(C \) be a component of an open subset \(U \subseteq X \). Let \(P \subseteq C \) be a nonempty path-component. Then \(P \) is open in \(X \). But all of the other path-components of \(C \) are also open, so their union, which is the complement of \(P \), must be open. It follows that \(P \) is closed. Since \(C \) is connected, we must have \(P = C \).

On the other hand, suppose that \((4) \) holds. Let \(U \) be a neighborhood of \(x \). Then the component \(C_x \) of \(x \) in \(U \) is the desired neighborhood \(V \).
In particular, this says that the components and path-components agree if \(X \) is locally path-connected.

Just as path-connected implies connected, locally path-connected implies locally-connected. But, unfortunately, there are no other implications between the four properties.

Example 16.20. The topologist’s sine curve is connected, but not path-connected or locally connected or locally path-connected. Thus it is possible to be connected but not locally so.

Example 16.21. For any space \(X \), the cone on \(X \) is defined to be \(CX = X \times [0, 1]/X \times \{1\} \). The cone on any space is always path-connected. In particular, the cone on the topologist’s sine curve is connected and-path connected but not locally connected or locally path-connected.

Example 16.22. A disjoint union of two topologist’s sine curves gives an example that is not connected in any of the four ways.

Example 16.23. Note that if \(X \) is locally path-connected, then connectedness is equivalent to path-connectedness. A connected example would be \(\mathbb{R} \) or a one-point space. A disconnected example would be \((0, 1) \cup (2, 3) \) or a two-point (discrete) space.

Finally, we have spaces that are locally connected but not locally path-connected.

Example 16.24. The cocountable topology on \(\mathbb{R} \) is connected and locally connected but not path-connected or locally path-connected.

Example 16.25. The cone on the cocountable topology will give a connected, path-connected, locally connected space that is not locally path-connected.

Example 16.26. Two copies of \(\mathbb{R}_{\text{coconutable}} \) give a space that is locally connected but not connected in the other three ways.

17. Compactness

The next topic is one of the major ones in the course: compactness. As we will see, this is the analogue of a “closed and bounded subset” in a general space. The definition relies on the idea of coverings.

Definition 17.1. An open cover of \(X \) is a collection \(\mathcal{U} \) of open subsets that cover \(X \). In other words, \(\bigcup_{U \in \mathcal{U}} U = X \). Given two covers \(\mathcal{U} \) and \(\mathcal{V} \) of \(X \), we say that \(\mathcal{V} \) is a subcover if \(\mathcal{V} \subseteq \mathcal{U} \).

Definition 17.2. A space \(X \) is said to be compact if every open cover has a finite subcover (i.e. a cover involving finitely many open sets).

Example 17.3. Clearly any finite topological space is compact, no matter the topology.

Example 17.4. An infinite set with the discrete topology is not compact, as the collection of singletons gives an open cover with no finite subcover.

Example 17.5. \(\mathbb{R} \) is not compact, as the open cover \(\mathcal{U} = \{(n, n) \mid n \in \mathbb{N}\} \) has no finite subcover.

Example 17.6. Similarly \([0, \infty) \) is not compact, as the open cover \(\mathcal{U} = \{(0, n)\} \) has no finite subcover. Recall that \([0, \infty) \cong [a, b] \).

Theorem 17.7. Let \(a < b \). Then \([a, b] \) is a compact subset of \(\mathbb{R} \).
Proof. Let \mathcal{U} be an open cover. Then some element of the cover must contain a. Pick such an element and call it U_0.

Consider the set

$$ E = \{ c \in [a, b] \mid [a, c] \text{ is finitely covered by } \mathcal{U} \}. $$

Certainly $a \in E$ and E is bounded above by b. By the Least Upper Bound Axiom, $s = \sup E$ exists. Note that $a \leq s \leq b$, so we must have $s \in U_s$ for some $U_s \in \mathcal{U}$. In general, U_s may not be connected, so let $s \in V \subseteq U_s$ be an open interval. But then for any $c < s$ with $c \in V \subseteq U_s$, we have $c \in E$. This means that

$$ [a, c] \subseteq U_1 \cup \cdots \cup U_k $$

for $U_1, \ldots, U_k \in \mathcal{U}$. But then $[a, s] \subseteq U_1 \cup \cdots \cup U_k \cup U_s$. This shows that $s \in E$. On the other hand, the same argument shows that for any $s < d < b$ with $d \in U_s$, we would similarly have $d \in E$. Since $s = \sup E$, there cannot exist such a d. This implies that $s = b$. \hfill \square

Like connectedness, compactness is preserved by continuous functions.

Proposition 17.8. Let $f : X \to Y$ be continuous, and assume that X is compact. Then $f(X)$ is compact.

Proof. Let \mathcal{V} be an open cover of $f(X)$. Then $\mathcal{U} = \{ f^{-1}(V) \mid V \in \mathcal{V} \}$ is an open cover of X. Let $\{U_1, \ldots, U_k\}$ be a finite subcover. It follows that the corresponding $\{V_1, \ldots, V_k\}$ is a finite subcover of \mathcal{V}. \hfill \square

Example 17.9. Recall that we have the quotient map $\exp : [0, 1] \to S^1$. It follows that S^1 is compact.

Theorem 17.10 (Extreme Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous. Then f attains a maximum and a minimum.

Proof. Since f is continuous and $[a, b]$ is both connected and compact, the same must be true of its image. But the compact, connected subsets are precisely the closed intervals. \hfill \square

The following result is also quite useful.

Proposition 17.11. Let X be Hausdorff and let $A \subseteq X$ be a compact subset. Then A is closed in X.

Proof. Pick any point $x \in X \setminus A$ (if we can’t, then $A = X$ and we are done). For each $a \in A$, we have disjoint neighborhoods $a \in U_a$ and $x \in V_a$. Since the U_a cover A, we only need finitely many, say U_{a_1}, \ldots, U_{a_k} to cover A. But then the intersection

$$ V = V_{a_1} \cap \cdots \cap V_{a_k} $$

of the corresponding V_a’s is disjoint from the union of the U_a’s and therefore also from A. Since V is a finite intersection of open sets, it is open and thus gives a neighborhood of x in $X \setminus A$. It follows that A is closed. \hfill \square

Exercise 17.12. If $A \subseteq X$ is closed and X is compact, then A is compact.

Combining these results gives the following long-awaited consequence.

Corollary 17.13. Let $f : X \to Y$ be continuous, where X is compact and Y is Hausdorff, then f is a closed map.

In particular, if f is already known to be a continuous bijection, then it is automatically a homeomorphism. For example, this shows that the map $I/\partial I \to S^1$ is a homeomorphism. Similarly, from Example 14.10 we have $D^n/\partial D^n \cong S^{n-1}$.

43
17.1. **Products.** We will next show that finite products of compact spaces are compact, but we first need a lemma.

Lemma 17.14 (Tube Lemma). Let X be compact and Y be any space. If $W \subseteq X \times Y$ is open and contains $X \times \{y\}$, then there is a neighborhood V of y with $X \times V \subseteq W$.

Proof. For each $x \in X$, we can find a basic neighborhood $U_x \times V_x$ of (x, y) in W. The U_x's give an open cover of X, so we only need finitely many of them, say U_{x_1}, \ldots, U_{x_n}. Then we may take $V = V_{x_1} \cap \cdots \cap V_{x_n}$.

\[\Box\]