Mon, Nov. 6

There is often a smallest compactification, given by the following construction.

Definition 18.3. Let X be a space and define $\widehat{X} = X \cup \{\infty\}$, where $U \subseteq \widehat{X}$ is open if either

- $U \subseteq X$ and U is open in X or
- $\infty \in U$ and $\widehat{X} \setminus U \subseteq X$ is compact.

Proposition 18.4. Suppose that X is Hausdorff and noncompact. Then \hat{X} is a compactification. If X is locally compact, then \hat{X} is Hausdorff.

Proof. We first show that \hat{X} is a space! It is clear that both \emptyset and \hat{X} are open.

Suppose that U_1 and U_2 are open. We wish to show that $U_1 \cap U_2$ is open.

- If neither open set contains ∞ , this follows since X is a space.
- If $\infty \in U_1$ but $\infty \notin U_2$, then $K_1 = X \setminus U_1$ is compact. Since X is Hausdorff, K_1 is closed in X. Thus $X \setminus K_1 = U_1 \setminus \{\infty\}$ is open in X, and it follows that $U_1 \cap U_2 = (U_1 \setminus \{\infty\}) \cap U_2$ is open.
- If $\infty \in U_1 \cap U_2$, then $K_1 = X \setminus U_1$ and $K_2 = X \setminus U_2$ are compact. It follows that $K_1 \cup K_2$ is compact, so that $U_1 \cap U_2 = X \setminus (K_1 \cup K_2)$ is open.
- Suppose we have a collection U_i of open sets. If none contain ∞ , then neither does $\bigcup U_i$,

and the union is open in X. If $\infty \in U_j$ for some j, then $\infty \in \bigcup_i U_i$ and

$$\widehat{X} \setminus \bigcup_{i} U_{i} = \bigcap_{i} (\widehat{X} \setminus U_{i}) = \bigcap_{i} (X \setminus U_{i})$$

is a closed subset of the compact set $X \setminus U_i$, so it must be compact.

Next, we show that $\iota : X \longrightarrow \widehat{X}$ is an embedding. Continuity of ι again uses that compact subsets of X are closed. That ι is open follows immediately from the definition of \widehat{X} .

To see that $\iota(X)$ is dense in \widehat{X} , it suffices to see that $\{\infty\}$ is not open. But this follows from the definition of \widehat{X} , since X is not compact.

Finally, we show that \widehat{X} is compact. Let \mathcal{U} be an open cover. Then some $U \in \mathcal{U}$ must contain ∞ . The remaining elements of \mathcal{U} must cover $X \setminus U$, which is compact. It follows that we can cover $X \setminus U$ using only finitely many elements, so \mathcal{U} has a finite subcover.

Now suppose that X is locally compact. Let x_1 and x_2 in \hat{X} . If neither is ∞ , then we have disjoint neighborhoods in X, and these are still disjoint neighborhoods in \hat{X} . If $x_2 = \infty$, let $x_1 \in U \subseteq K$, where U is open and K is compact. Then U and $V = \hat{X} \setminus K$ are the desired disjoint neighborhoods.

Example 18.5. We saw that S^1 is a one-point compactification of $(0,1) \cong \mathbb{R}$. You will show on your homework that similarly S^n is a one-point compactification of \mathbb{R}^n .

Example 18.6. As we have seen, \mathbb{Q} is not locally compact, so we do not expect $\widehat{\mathbb{Q}}$ to be Hausdorff. Indeed, any open subset containing ∞ is dense in $\widehat{\mathbb{Q}}$. Because of the topology on $\widehat{\mathbb{Q}}$, this is equivalent to showing that for any open, nonempty subset $U \subseteq \mathbb{Q}$, U is not contained in any compact subset. Since \mathbb{Q} is Hausdorff, if U were contained in a compact subset, then \overline{U} would also be compact. But as we have seen, for any interval $(a, b) \cap \mathbb{Q}$, the closure in \mathbb{Q} , which is $[a, b] \cap \mathbb{Q}$, is not compact.

Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally.

Proposition 18.7. Let X be locally compact Hausdorff and let $f: X \longrightarrow Y$ be a (Hausdorff) compactification. Then there is a (unique) quotient map $q: Y \longrightarrow \widehat{X}$ such that $q \circ f = \iota$.

 $\begin{array}{c} Y - - - \stackrel{q}{-} - & \Rightarrow \widehat{X} \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$

We will need:

Lemma 18.8. Let X be locally compact Hausdorff and $f: X \longrightarrow Y$ a compactification. Then f is open.

Proof of Prop. 18.7. We define

$$q(y) = \begin{cases} \iota(x) & \text{if } y = f(x) \\ \infty & \text{if } y \notin f(X). \end{cases}$$

To see that q is continuous, let $U \subseteq \widehat{X}$ be open. If $\infty \notin U$, then $q^{-1}(U) = f(\iota^{-1}(U))$ is open by the lemma. If $\infty \in U$, then $K = \widehat{X} \setminus U$ is compact and thus closed. We have $q^{-1}(K) = f(\iota^{-1}(K))$ is compact and closed in Y, so it follows that $q^{-1}(U) = Y \setminus q^{-1}(K)$ is open.

Note that q is automatically a quotient map since it is a closed continuous surjection (it is closed because Y is compact and \hat{X} is Hausdorff). Note also that q is unique because \hat{X} is Hausdorff and q is already specified on the dense subset $f(X) \subseteq Y$.

Wed, Nov. 8

Last time, we said that we had a *unique* quotient map $q: Y \longrightarrow \hat{X}$ for any Hausdorff compactification Y. Why is it unique? The definition of q on the dense subset $f(X) \subset Y$ was forced, and \hat{X} is Hausdorff. Then uniqueness is given by

Proposition 18.9. Let Z be Hausdorff, and let $f, g : X \rightrightarrows Z$ be continuous functions. If f and g agree on a dense subset, then they agree on all of X.

Proof of Lemma. Since f is an embedding, we can pretend that $X \subseteq Y$ and that f is simply the inclusion. We wish to show that X is open in Y. Thus let $x \in X$. Let U be a precompact neighborhood of x. Thus $K = \operatorname{cl}_X(U)$ is compact³ and so must be closed in Y (and X) since Y is Hausdorff. By the definition of the subspace topology, we must have $U = V \cap X$ for some open $V \subseteq Y$. Then V is a neighborhood of x in Y, and

$$V = V \cap Y = V \cap \operatorname{cl}_Y(X) \subseteq \operatorname{cl}_Y(V \cap X) = K \subseteq X.$$

The middle inclusion can be checked using the neighborhood criterion, using that V is open in Y.

Corollary 18.10. Any two one-point compactifications are homeomorphic.

The following is a useful characterization of locally compact Hausdorff spaces.

Proposition 18.11. A space X is Hausdorff and locally compact if and only if it is homeomorphic to an open subset of a compact Hausdorff space Y.

Proof. (\Rightarrow). We saw that X is open in the compact Hausdorff space $Y = \hat{X}$.

 (\Leftarrow) As a subspace of a Hausdorff space, X must also be Hausdorff. It remains to show that every point has a compact neighborhood (in X). Write $Y_{\infty} = Y \setminus X$. This is closed in Y and therefore compact. By Problem 3 from HW7, we can find disjoint open sets $x \in U$ and $Y_{\infty} \subseteq V$ in Y. Then $K = Y \setminus V$ is the desired compact neighborhood of x in X.

³We will need to distinguish between closures in X and closures in Y, so we use the notation $cl_X(A)$ for closure rather than our usual \overline{A} .

Corollary 18.12. If X and Y are locally compact Hausdorff, then so is $X \times Y$.

Corollary 18.13. Any open or closed subset of a locally compact Hausdorff space is locally compact Hausdorff.

18.1. Separation Axioms. We finally turn to the so-called "separation axioms".

Definition 18.14. A space X is said to be

- T_0 if given two distinct points x and y, there is a neighborhood of one not containing the other
- T_1 if given two distinct points x and y, there is a neighborhood of x not containing y and vice versa (points are closed)
- T_2 (Hausdorff) if any two distinct points x and y have disjoint neighborhoods
- T_3 (regular) if points are closed and given a closed subset A and $x \notin A$, there are disjoint open sets U and V with $A \subseteq U$ and $x \in V$
- T_4 (normal) if points are closed and given closed disjoint subsets A and B, there are disjoint open sets U and V with $A \subseteq U$ and $B \subseteq V$.

Note that $T_4 \implies T_3 \implies T_2 \implies T_1 \implies T_0$. But beware that in some literature, the "points are closed" clause is not included in the definition of regular or normal. Without that, we would not be able to deduce T_2 from T_3 or T_4 .

We have talked a lot about Hausdorff spaces. The other important separation property is T_4 . We will not really discuss the intermediate notion of regular (or the other variants completely regular, completely normal, etc.)

Proposition 18.15. Any compact Hausdorff space is normal.

Proof. This was homework problem 8.5.

More generally,

Theorem 18.16. Suppose X is locally compact, Hausdorff, and second-countable. Then X is normal.

Another important class of normal spaces is the collection of metric spaces.

Proposition 18.17. If X is metric, then it is normal.

Unfortunately, the T_4 condition alone is not preserved by the constructions we have studied.

Example 18.18. (Images) \mathbb{R} is normal. But recall the quotient map $q : \mathbb{R} \longrightarrow \{-1, 0, 1\}$ which sends any number to its sign. This quotient is not Hausdorff and therefore not (regular or) normal.

Example 18.19. (Subspaces) If J is uncountable, then the product $(0, 1)^J$ is *not* normal (Munkres, example 32.2). This is a subspace of $[0, 1]^J$, which is compact Hausdorff by the Tychonoff theorem and therefore normal. So a subspace of a normal space need not be normal. We also saw in this example that (uncountable) products of normal spaces need not be normal.

Ok, so we've seen a few examples. So what, why should we care about normal spaces? Look back at the definition for T_2 , T_3 , T_4 . In each case, we need to find certain open sets U and V. How would one do this in general? In a metric space, we would build these up by taking unions of balls. In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling back open sets under a continuous map. That is, suppose we have a map $f: X \longrightarrow [0, 1]$ such that $f \equiv 0$ on A and $f \equiv 1$ on B. Then $A \subseteq U := f^{-1}([0, \frac{1}{2}))$ and $B \subseteq V := f^{-1}((\frac{1}{2}, 1])$, and $U \cap V = \emptyset$. One of the main consequences of normality is

51

Theorem 18.20 (Urysohn's Lemma). Let X be normal and let A and B be disjoint closed subsets. Then there exists a continuous function $f: X \longrightarrow [0,1]$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$.

Note that Urysohn's Lemma becomes an if and only if statement if we either drop the T_1 -condition from normal or if we explicitly include singletons as possible replacements for A and B.

A typical application of Urysohn's lemma is to create **bump functions**, which are equal to 1 on a closed set A and vanish outside some open $U \supset A$.

Theorem 18.21. Suppose X is locally compact, Hausdorff, and second-countable. Then X is metrizable.

See [Munkres, Theorem 34.1]. The point is that you can use Urysohn functions to give an embedding of X into $\mathbb{R}^{\mathbb{N}}$.

Part 5. Nice spaces - the ones we really, really care about

Fri, Nov. 10

19. Manifolds

We finally arrive at one of the most important definitions of the course.

Definition 19.1. A (topological) *n*-manifold M is a Hausdorff, second-countable space such that each point has a neighborhood homeomorphic to an open subset of \mathbb{R}^n .

Example 19.2. (1) \mathbb{R}^n and any open subset is obviously an *n*-manifold

- (2) S^1 is a 1-manifold. More generally, S^n is an *n*-manifold. Indeed, we have shown that if you remove a point from S^n , the resulting space is homeomorphic to \mathbb{R}^n .
- (3) T^n , the *n*-torus, is an *n*-manifold. In general, if M is an *m*-manifold and N is an *n*-manifold, then $M \times N$ is an (m+n)-manifold.
- (4) \mathbb{RP}^n is an *n*-manifold. There is a standard covering of \mathbb{RP}^n by open sets as follows. Recall that $\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\})/\mathbb{R}^{\times}$. For each $1 \leq i \leq n+1$, let $V_i \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be the complement of the hyperplane $x_i = 0$. This is an open, saturated set, and so its image $U_i = V_i/\mathbb{R}^{\times} \subseteq \mathbb{RP}^n$ is open. The V_i 's cover $\mathbb{R}^{n+1} \setminus \{0\}$, so the U_i 's cover \mathbb{RP}^n . We leave the rest of the details as an exercise.
- (5) \mathbb{CP}^n is a 2*n*-manifold. This is similar to the description given above.
- (6) O(n) is a $\frac{n(n-1)}{2}$ -manifold. Since it is also a topological group, this makes it a *Lie group*. The standard way to see that this is a manifold is to realize the orthogonal group as the preimage of the identity matrix under the transformation $M_n(R) \longrightarrow M_n(R)$ that sends A to $A^T A$. This map lands in the subspace $S_n(R)$ of symmetric $n \times n$ matrices. This space can be identified with $\mathbb{R}^{n(n+1)/2}$.

Now the $n \times n$ identity matrix is an element of S_n , and an important result in differential topology (Sard's theorem) that says that if a certain derivative map is surjective, then the preimage of the submanifold $\{I_n\}$ will be a submanifold of $M_n(\mathbb{R})$ of the same "codimension". In this case, the relevant derivative is the matrix of partial derivatives of $A \mapsto A^T A$, writen in a suitable basis. It follows that

dim
$$O(n) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}.$$

The dimension statement can also be seen directly as follows. If A is an orthogonal matrix, its first column is just a point of S^{n-1} . Then its second column is a point on the sphere

orthogonal to the first column, so it lives in an "equator", meaning a sphere of dimension one less. Continuing in this way, we see that the "degree of freedom" for specifying a point of O(n) is $(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}$.

(7) $\operatorname{Gr}_{k,n}(\mathbb{R})$ is a k(n-k)-manifold. One way to see this is to use the homeomorphism

$$\operatorname{Gr}_{k,n}(\mathbb{R}) \cong O(n) / (O(k) \times O(n-k))$$

from Example 15.7. We get

$$\dim \operatorname{Gr}_{n,k}(\mathbb{R}) = \dim O(n) - \left(\dim O(k) + \dim O(n-k)\right)$$
$$= \sum_{j=1}^{n-1} j - \left(\sum_{j=1}^{k-1} j + \sum_{\ell=1}^{n-k-1} \ell\right) = \sum_{j=k}^{n-1} j - \sum_{\ell=1}^{n-k-1} \ell$$
$$= \sum_{\ell=0}^{n-k-1} k + \ell - \sum_{\ell=0}^{n-k-1} \ell = \sum_{\ell=0}^{n-k-1} k = k(n-k)$$

Here are some nonexamples of manifolds.

- **Example 19.3.** (1) The union of the coordinate axes in \mathbb{R}^2 . Every point has a neighborhood like \mathbb{R}^1 except for the origin.
 - (2) A discrete uncountable set is not second countable.
 - (3) A 0-manifold is discrete, so \mathbb{Q} is not a 0-manifold.
 - (4) Glue together two copies of \mathbb{R} by identifying any nonzero x in one copy with the point x in the other. This is second-countable and looks locally like \mathbb{R}^1 , but it is not Hausdorff.

19.1. Properties of Manifolds.

Proposition 19.4. Any manifold is locally path-connected.

This follows immediately since a manifold is locally Euclidean.

Proposition 19.5. Any manifold is normal.

Proof. This follows from Theorem 18.16. To see that a manifold M is locally compact, consider a point $x \in M$. Then x has a Euclidean neighborhood $x \in U \subseteq M$. U is homeomorphic to an open subset V of \mathbb{R}^n , so we can find a compact neighborhood K of x in V (think of a closed ball in \mathbb{R}^n). Under the homeomorphism, K corresponds to a compact neighborhood of x in U.

It also follows similarly that any manifold is metrizable, but we can do better. It is convenient to introduce the following term.

19.2. Embedding.

Theorem 19.6. Any manifold M^n admits an embedding into some Euclidean space \mathbb{R}^N .

Sketch. The theorem is true as stated, but we only prove it in the case of a compact manifold. Note that in this case, since M is compact and \mathbb{R}^N is Hausdorff, it is enough to find a continuous injection of M into some \mathbb{R}^N .

Since M is a manifold, it has an open cover by sets that are homeomorphic to \mathbb{R}^n . Since it is compact, there is a finite subcover $\{U_1, \ldots, U_k\}$. The idea is to then use Urysohn's lemma to extend these homeomorphisms $U_i \cong \mathbb{R}^n$ to functions $f_i : M \longrightarrow \mathbb{R}^n$. Technically, this uses what is called a "partition of unity". Then the collection of functions $\{f_i\}$ give a single function $f : M \longrightarrow (\mathbb{R}^n)^k$. Often, this is an injection, but if the cover is not very well-behaved then it is necessary to also tack on the k Urysohn functions in order to get an injection $M \hookrightarrow \mathbb{R}^{nk+k}$.

In fact, one can do better. Munkres shows (Cor. 50.8) that every compact *n*-manifold embeds inside \mathbb{R}^{2n+1} .