
Mon, Nov. 6

There is often a smallest compactification, given by the following construction.

Definition 18.3. Let X be a space and define bX = X [ {1}, where U ✓ bX is open if either

• U ✓ X and U is open in X or
• 1 2 U and bX \ U ✓ X is compact.

Proposition 18.4. Suppose that X is Hausdor↵ and noncompact. Then bX is a compactification.
If X is locally compact, then bX is Hausdor↵.

Proof. We first show that bX is a space! It is clear that both ; and bX are open.
Suppose that U

1

and U
2

are open. We wish to show that U
1

\ U
2

is open.

• If neither open set contains 1, this follows since X is a space.
• If 1 2 U

1

but 1 /2 U
2

, then K
1

= X \U
1

is compact. Since X is Hausdor↵, K
1

is closed in
X. Thus X \K

1

= U
1

\ {1} is open in X, and it follows that U
1

\ U
2

= (U
1

\ {1}) \ U
2

is open.
• If 1 2 U

1

\ U
2

, then K
1

= X \ U
1

and K
2

= X \ U
2

are compact. It follows that K
1

[K
2

is compact, so that U
1

\ U
2

= X \ (K
1

[K
2

) is open.

• Suppose we have a collection U
i

of open sets. If none contain 1, then neither does
[

i

U
i

,

and the union is open in X. If 1 2 U
j

for some j, then 1 2
[

i

U
i

and

bX \
[

i

U
i

=
\

i

( bX \ U
i

) =
\

i

(X \ U
i

)

is a closed subset of the compact set X \ U
j

, so it must be compact.

Next, we show that ◆ : X �! bX is an embedding. Continuity of ◆ again uses that compact
subsets of X are closed. That ◆ is open follows immediately from the definition of bX.

To see that ◆(X) is dense in bX, it su�ces to see that {1} is not open. But this follows from the
definition of bX, since X is not compact.

Finally, we show that bX is compact. Let U be an open cover. Then some U 2 U must contain
1. The remaining elements of U must cover X \U , which is compact. It follows that we can cover
X \ U using only finitely many elements, so U has a finite subcover.

Now suppose that X is locally compact. Let x
1

and x
2

in bX. If neither is 1, then we have
disjoint neighborhoods in X, and these are still disjoint neighborhoods in bX. If x

2

= 1, let
x
1

2 U ✓ K, where U is open and K is compact. Then U and V = bX \K are the desired disjoint
neighborhoods. ⌅

Example 18.5. We saw that S1 is a one-point compactification of (0, 1) ⇠= R. You will show on
your homework that similarly Sn is a one-point compactification of Rn.

Example 18.6. As we have seen, Q is not locally compact, so we do not expect bQ to be Hausdor↵.
Indeed, any open subset containing1 is dense in bQ. Because of the topology on bQ, this is equivalent
to showing that for any open, nonempty subset U ✓ Q, U is not contained in any compact subset.
Since Q is Hausdor↵, if U were contained in a compact subset, then U would also be compact. But
as we have seen, for any interval (a, b) \Q, the closure in Q, which is [a, b] \Q, is not compact.

Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally.
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Proposition 18.7. Let X be locally compact Hausdor↵ and let
f : X �! Y be a (Hausdor↵) compactification. Then there is a
(unique) quotient map q : Y �! bX such that q � f = ◆.

Y
q // bX

X
f

__

◆

??

We will need:

Lemma 18.8. Let X be locally compact Hausdor↵ and f : X �! Y a compactification. Then f is
open.

Proof of Prop. 18.7. We define

q(y) =

⇢

◆(x) if y = f(x)
1 if y /2 f(X).

To see that q is continuous, let U ✓ bX be open. If 1 /2 U , then q�1(U) = f(◆�1(U)) is open by
the lemma. If 1 2 U , then K = bX \ U is compact and thus closed. We have q�1(K) = f(◆�1(K))
is compact and closed in Y , so it follows that q�1(U) = Y \ q�1(K) is open.

Note that q is automatically a quotient map since it is a closed continuous surjection (it is closed
because Y is compact and bX is Hausdor↵). Note also that q is unique because bX is Hausdor↵ and
q is already specified on the dense subset f(X) ✓ Y . ⌅

Wed, Nov. 8

Last time, we said that we had a unique quotient map q : Y �! bX for any Hausdor↵ compacti-
fication Y . Why is it unique? The definition of q on the dense subset f(X) ⇢ Y was forced, and
bX is Hausdor↵. Then uniqueness is given by

Proposition 18.9. Let Z be Hausdor↵, and let f, g : X ◆ Z be continuous functions. If f and g
agree on a dense subset, then they agree on all of X.

Proof of Lemma. Since f is an emebedding, we can pretend that X ✓ Y and that f is simply
the inclusion. We wish to show that X is open in Y . Thus let x 2 X. Let U be a precompact
neighborhood of x. Thus K = cl

X

(U) is compact3 and so must be closed in Y (and X) since Y
is Hausdor↵. By the definition of the subspace topology, we must have U = V \X for some open
V ✓ Y . Then V is a neighborhood of x in Y , and

V = V \ Y = V \ cl
Y

(X) ✓ cl
Y

(V \X) = K ✓ X.

The middle inclusion can be checked using the neighborhood criterion, using that V is open in
Y . ⌅
Corollary 18.10. Any two one-point compactifications are homeomorphic.

The following is a useful characterization of locally compact Hausdor↵ spaces.

Proposition 18.11. A space X is Hausdor↵ and locally compact if and only if it is homeomorphic
to an open subset of a compact Hausdor↵ space Y .

Proof. ()). We saw that X is open in the compact Hausdor↵ space Y = bX.
(() As a subspace of a Hausdor↵ space, X must also be Hausdor↵. It remains to show that

every point has a compact neighborhood (in X). Write Y1 = Y \ X. This is closed in Y and
therefore compact. By Problem 3 from HW7, we can find disjoint open sets x 2 U and Y1 ✓ V in
Y . Then K = Y \ V is the desired compact neighborhood of x in X. ⌅

3We will need to distinguish between closures in X and closures in Y , so we use the notation cl
X

(A) for closure

rather than our usual A.
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Corollary 18.12. If X and Y are locally compact Hausdor↵, then so is X ⇥ Y .

Corollary 18.13. Any open or closed subset of a locally compact Hausdor↵ space is locally compact
Hausdor↵.

18.1. Separation Axioms. We finally turn to the so-called “separation axioms”.

Definition 18.14. A space X is said to be

• T
0

if given two distinct points x and y, there is a neighborhood of one not containing the
other

• T
1

if given two distinct points x and y, there is a neighborhood of x not containing y and
vice versa (points are closed)

• T
2

(Hausdor↵) if any two distinct points x and y have disjoint neighborhoods
• T

3

(regular) if points are closed and given a closed subset A and x /2 A, there are disjoint
open sets U and V with A ✓ U and x 2 V

• T
4

(normal) if points are closed and given closed disjoint subsets A and B, there are disjoint
open sets U and V with A ✓ U and B ✓ V .

Note that T
4

=) T
3

=) T
2

=) T
1

=) T
0

. But beware that in some literature, the “points
are closed” clause is not included in the definition of regular or normal. Without that, we would
not be able to deduce T

2

from T
3

or T
4

.
We have talked a lot about Hausdor↵ spaces. The other important separation property is T

4

. We
will not really discuss the intermediate notion of regular (or the other variants completely regular,
completely normal, etc.)

Proposition 18.15. Any compact Hausdor↵ space is normal.

Proof. This was homework problem 8.5. ⌅

More generally,

Theorem 18.16. Suppose X is locally compact, Hausdor↵, and second-countable. Then X is
normal.

Another important class of normal spaces is the collection of metric spaces.

Proposition 18.17. If X is metric, then it is normal.

Unfortunately, the T
4

condition alone is not preserved by the constructions we have studied.

Example 18.18. (Images) R is normal. But recall the quotient map q : R �! {�1, 0, 1} which
sends any number to its sign. This quotient is not Hausdor↵ and therefore not (regular or) normal.

Example 18.19. (Subspaces) If J is uncountable, then the product (0, 1)J is not normal (Munkres,
example 32.2). This is a subspace of [0, 1]J , which is compact Hausdor↵ by the Tychono↵ theorem
and therefore normal. So a subspace of a normal space need not be normal. We also saw in this
example that (uncountable) products of normal spaces need not be normal.

Ok, so we’ve seen a few examples. So what, why should we care about normal spaces? Look
back at the definition for T

2

, T
3

, T
4

. In each case, we need to find certain open sets U and V . How
would one do this in general? In a metric space, we would build these up by taking unions of balls.
In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling
back open sets under a continuous map. That is, suppose we have a map f : X �! [0, 1] such that
f ⌘ 0 on A and f ⌘ 1 on B. Then A ✓ U := f�1([0, 1

2

)) and B ✓ V := f�1((1
2

, 1]), and U \V = ;.
One of the main consequences of normality is
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Theorem 18.20 (Urysohn’s Lemma). Let X be normal and let A and B be disjoint closed subsets.
Then there exists a continuous function f : X �! [0, 1] such that A ✓ f�1(0) and B ✓ f�1(1).

Note that Urysohn’s Lemma becomes an if and only if statement if we either drop the T
1

-condition
from normal or if we explicitly include singletons as possible replacements for A and B.

A typical application of Urysohn’s lemma is to create bump functions, which are equal to 1
on a closed set A and vanish outside some open U � A.

Theorem 18.21. Suppose X is locally compact, Hausdor↵, and second-countable. Then X is
metrizable.

See [Munkres, Theorem 34.1]. The point is that you can use Urysohn functions to give an
embedding of X into RN.

Part 5. Nice spaces - the ones we really, really care about

Fri, Nov. 10

19. Manifolds

We finally arrive at one of the most important definitions of the course.

Definition 19.1. A (topological) n-manifold M is a Hausdor↵, second-countable space such that
each point has a neighborhood homeomorphic to an open subset of Rn.

Example 19.2. (1) Rn and any open subset is obviously an n-manifold

(2) S1 is a 1-manifold. More generally, Sn is an n-manifold. Indeed, we have shown that if you
remove a point from Sn, the resulting space is homeomorphic to Rn.

(3) Tn, the n-torus, is an n-manifold. In general, if M is an m-manifold and N is an n-manifold,
then M ⇥N is an (m+ n)-manifold.

(4) RPn is an n-manifold. There is a standard covering of RPn by open sets as follows. Recall
that RPn = (Rn+1\{0})/R⇥. For each 1  i  n+1, let V

i

✓ Rn+1\{0} be the complement
of the hyperplane x

i

= 0. This is an open, saturated set, and so its image U
i

= V
i

/R⇥ ✓ RPn

is open. The V
i

’s cover Rn+1 \ {0}, so the U
i

’s cover RPn. We leave the rest of the details
as an exercise.

(5) CPn is a 2n-manifold. This is similar to the description given above.

(6) O(n) is a n(n�1)

2

-manifold. Since it is also a topological group, this makes it a Lie group.
The standard way to see that this is a manifold is to realize the orthogonal group as the
preimage of the identity matrix under the transformation M

n

(R) �! M
n

(R) that sends A
to ATA. This map lands in the subspace S

n

(R) of symmetric n ⇥ n matrices. This space
can be identified with Rn(n+1)/2.

Now the n⇥n identity matrix is an element of S
n

, and an important result in di↵erential
topology (Sard’s theorem) that says that if a certain derivative map is surjective, then the
preimage of the submanifold {I

n

} will be a submanifold of M
n

(R) of the same “codimen-
sion”. In this case, the relevant derivative is the matrix of partial derivatives of A 7! ATA,
writen in a suitable basis. It follows that

dimO(n) = n2 � n(n+ 1)

2
=

n(n� 1)

2
.

The dimension statement can also be seen directly as follows. If A is an orthogonal matrix,
its first column is just a point of Sn�1. Then its second column is a point on the sphere
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orthogonal to the first column, so it lives in an “equator”, meaning a sphere of dimension
one less. Continuing in this way, we see that the “degree of freedom” for specifying a point
of O(n) is (n� 1) + (n� 2) + · · ·+ 1 = n(n�1)

2

.
(7) Gr

k,n

(R) is a k(n� k)-manifold. One way to see this is to use the homeomorphism

Gr
k,n

(R) ⇠= O(n)/
�

O(k)⇥O(n� k)
�

from Example 15.7. We get

dimGr
n,k

(R) = dimO(n)�
�

dimO(k) + dimO(n� k)
�

=
n�1

X

j=1

j �

0

@

k�1

X

j=1

j +
n�k�1

X

`=1

`

1

A =
n�1

X

j=k

j �
n�k�1

X

`=1

`

=
n�k�1

X

`=0

k + `�
n�k�1

X

`=0

` =
n�k�1

X

`=0

k = k(n� k)

Here are some nonexamples of manifolds.

Example 19.3. (1) The union of the coordinate axes in R2. Every point has a neighborhood
like R1 except for the origin.

(2) A discrete uncountable set is not second countable.
(3) A 0-manifold is discrete, so Q is not a 0-manifold.
(4) Glue together two copies of R by identifying any nonzero x in one copy with the point x in

the other. This is second-countable and looks locally like R1, but it is not Hausdor↵.

19.1. Properties of Manifolds.

Proposition 19.4. Any manifold is locally path-connected.

This follows immediately since a manifold is locally Euclidean.

Proposition 19.5. Any manifold is normal.

Proof. This follows from Theorem 18.16. To see that a manifold M is locally compact, consider a
point x 2 M . Then x has a Euclidean neighborhood x 2 U ✓ M . U is homeomorphic to an open
subset V of Rn, so we can find a compact neighborhood K of x in V (think of a closed ball in Rn).
Under the homeomorphism, K corresponds to a compact neighborhood of x in U . ⌅

It also follows similarly that any manifold is metrizable, but we can do better. It is convenient
to introduce the following term.

19.2. Embedding.

Theorem 19.6. Any manifold Mn admits an embedding into some Euclidean space RN .

Sketch. The theorem is true as stated, but we only prove it in the case of a compact manifold.
Note that in this case, since M is compact and RN is Hausdor↵, it is enough to find a continuous
injection of M into some RN .

Since M is a manifold, it has an open cover by sets that are homeomorphic to Rn. Since it is
compact, there is a finite subcover {U

1

, . . . , U
k

}. The idea is to then use Urysohn’s lemma to extend
these homeomorphisms U

i

⇠= Rn to functions f
i

: M �! Rn. Technically, this uses what is called a
“partition of unity”. Then the collection of functions {f

i

} give a single function f : M �! (Rn)k.
Often, this is an injection, but if the cover is not very well-behaved then it is necessary to also tack
on the k Urysohn functions in order to get an injection M ,! Rnk+k. ⌅

In fact, one can do better. Munkres shows (Cor. 50.8) that every compact n-manifold embeds
inside R2n+1.

53


