
Wed, Nov. 15

20. Mapping Spaces

The last main topic from the introductory part of the course on metric spaces is the idea of a
function space. Given any two spaces A and Y , we will want to be able to define a topology on
the set of continuous functions A �! Y in a sensible way. We already know one topology on Y A,
namely the product topology. But this does not use the topology on A at all.

Let’s forget about topology for a second. Recall from the beginning of the course that a function
h : X ⇥A �! Y between sets is equivalent to a function

 (h) : X �! Y A.

Given h, the map  (h) is defined by
�

 (h)(x)
�

(a) = h(x, a). Conversely, given  (h), the function
h can be recovered by the same formula.

Let’s play the same game in topology. What we want to say is that a continuous map
h : X ⇥A �! Y is the same as a continuous map X �! Map(A, Y ), for some appropriate space
of maps Map(A, Y ). Let’s start by seeing why the product topology does not have this property.

We write C(X,Z) for the set of continuous maps X �! Z. It is not di�cult to check that the
set-theoretic construction from above does give a function

C(X ⇥A, Y ) �! C(X,Y A),

where for the moment Y A denotes the set of continuous functions A �! Y given the product
topology. But this function is not surjective.

Example 20.1. Take A = [0, 1], Y = R, and X = Y A = R[0,1]. We can consider the identity map
R[0,1] �! R[0,1]. We would like this to correspond to a continuous map R[0,1]⇥ [0, 1] �! R. We see
that, ignoring the topology, this function must be the evaluation function ev : (g, x) 7! g(x). But
this is not continuous.

To see this consider ev�1((0, 1)). If we denote by ◆ : [0, 1] ,! R the inclusion, then the point
(◆, 1/2) lies in this preimage, but we claim that no neighborhood of this point is contained in the
preimage. In fact, we claim no basic neighborhood U ⇥ (a, b) lies in the preimage. For such a U
must consist of functions that are close to ◆ : [0, 1] �! R at finitely many points c

1

, . . . , c
n

. So given
any such U and any interval (a, b) = (1/2 � ✏, 1/2 + ✏), pick any point d 2 (a, b) that is distinct
from the c

i

. Then construct a continuous function g : [0, 1] �! R such that

(1) g(c
i

) = c
i

for each i and
(2) g(d) = two bajillion.

Then (g, d) 2 U ⇥ (a, b) but (g, d) /2 ev�1((0, 1)) since ev(g, d) = g(d) =two bajillion.

The compact-open topology on the set C(A, Y ) has a prebasis given by

S(K,U) = {f : A �! Y | f(K) ✓ U},
where K is compact and U ✓ Y is open. We write Map(A, Y ) for the set C(A, Y ) equipped with
the compact-open topology.

Theorem 20.2. Suppose that A is locally compact Hausdor↵. Then a function f : X ⇥ A �! Y
is continuous if and only if the induced function g =  (f) : X �! Map(A, Y ) is continuous.

Proof. ()) This direction does not need that A is locally compact. Before we give the proof, we

should note why  (f)(x) : A �! Y is continuous. This map is the composite A
◆

x�! X ⇥ A
f�! Y

and therefore continuous.
We now wish to show that g =  (f) is continuous. Let S(K,U) be a sub-basis element in

Map(A, Y ). We wish to show that g�1(S(K,U)) is open in X. Let g(x) = f(x,�) 2 S(K,U).
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Since f is continuous, the preimage f�1(U) ✓ X ⇥ A is open. Furthermore, {x} ⇥K ✓ f�1(U).
We wish to use the Tube Lemma, so we restrict from X ⇥ A to X ⇥ K. By the Tube Lemma,
we can find a basic neighborhood V of x such that V ⇥ K ✓ (X ⇥ K) \ f�1(U). It follows that
g(V ) ✓ S(K,U), so that V is a neighborhood of x in g�1(S(K,U)).

Fri, Nov. 17 (() Suppose that g is continuous. Note that we can write f as the composition

X ⇥A
g⇥id���! Map(A, Y )⇥A

ev�! Y,

so it is enough to show that ev is continuous.

Lemma 20.3. The map ev : Map(A, Y )⇥A �! Y is continuous if A is locally compact Hausdor↵.

Proof. Let U ✓ Y be open and take a point (f, a) in ev�1(U). This means that f(a) 2 U . Since
A is locally compact Hausdor↵, by Homework 9.3 we can find a compact neighborhood K of a
contained in f�1(U) (this is open since f is continuous). It follows that S(K,U) is a neighborhood
of f in Map(A, Y ), so that S(K,U)⇥K is a neighborhood of (f, a) in ev�1(U). ⌅

⌅

20.1. Hom-Tensor Adjunction. Even better, we have

Theorem 20.4. Let X and A be locally compact Hausdor↵. Then the above maps give homeomor-
phisms

Map(X ⇥A, Y ) ⇠= Map(X,Map(A, Y )).

It is fairly simple to construct a continuous map in either direction, using Theorem 20.2. You
should convince yourself that the two maps produced are in fact inverse to each other.

In practice, it’s a bit annoying to keep track of these extra hypotheses at all times, especially
since not all constructions will preserve these properties. It turns out that there is a “convenient”
category of spaces, where everything works nicely.

Definition 20.5. A space A is compactly generated if a subset B ✓ A is closed if and only if
for every map u : K �! A, where K is compact Hausdor↵, then u�1(B) ✓ K is closed.

We say that the topology of A is determined (or generated) by compact subsets. Examples of
compactly generated spaces include locally compact spaces and first countable spaces.

Definition 20.6. A space X is weak Hausdor↵ if the image of every u : K �! X is closed in
X.

There is a way to turn any space into a weak Hausdor↵ compactly generated space. In that land,
everything works well! For the most part, whenever an algebraic topologist says “space”, they
really mean a compactly generated weak Hausdor↵ space. Next semester, we will always implicity
be working with spaces that are CGWH.

Looking back to the initial discussion of metric spaces, there we introduced the uniform topology
on a mapping space.

Theorem 20.7 (Munkres, 46.7 or Willard, 43.6). Let Y be a metric space. Then on the set C(A, Y )
of continuous functions A �! Y , the compact-open topology is intermediate between the uniform
topology and the product topology. Furthermore, the compact-open topology agrees with the uniform
topology if A is compact.
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21. CW complexes

Recently, we consider topological manifolds, which are a nice collection of spaces. Next semester,
you will often work with another nice collection of spaces that can be built inductively. These are
cell complexes, or CW complexes.

A typical example is a sphere. In dimension 1, we have S1, which we can represent as the quotient
of I = [0, 1] by endpoint identification. Another way to say this is that we start with a point, and
we “attach” an interval to that point by gluing both ends to the given point.

For S2, there are several possibilities. One is to start with a point and glue a disk to the point
(glueing the boundary to the point). An alternative is to start with a point, then attach an interval
to get a circle. To this circle, we can attach a disk, but this just gives us a disk again, which we
think of as a hemisphere. If we then attach a second disk (the other hemisphere), we get S2.

But what do we really mean by “attach a disk”?

21.1. Pushouts. Let’s start today by discussing the general “pushout” construction.

Definition 21.1. Suppose that f : A �! X and g : A �! Y are continuous maps. The pushout
(or glueing construction) of X and Y along A is defined as

X [
A

Y := X q Y/ ⇠, f(a) ⇠ g(a).

We have an inclusion X ,! X q Y . Composing this with the quotient map
to X [

A

Y gives the map ◆
X

: X �! X [
A

Y . We similarly have a map
◆
Y

: Y �! X [
A

Y . Moreover, these maps make the diagram to the right
commute. The point is that

◆
X

(f(a)) = f(a) = g(a) = ◆
Y

(g(a)).

A
g //

f

✏✏

Y

◆

Y

✏✏
X

◆

X // X [
A

Y

The main point of this construction is the following property.

Proposition 21.2 (Universal property of the pushout).
Suppose that '

1

: X �! Z and '
2

: Y �! Z are maps
such that '

1

� f = '
2

� g. Then there is a unique map
� : X [

A

Y �! Z which makes the diagram to the right
commute.

A
g //

f

✏✏

Y

◆

Y

✏✏ '2



X
◆

X //

'1 ..

X [
A

Y
�

##
Z

This generalizes the “pasting” lemma. Suppose that U, V ✓ X are open subsets with X = U [V .
Then it is not di�cult to show that the pushout U [

U\V V is homeomorphic to X. The universal
property for the pushout then says that specifying a continuous map out of X is the same as
specifying a pair of continuous maps out of U and V which agree on their intersection U \V . This
is precisely the statement of the pasting lemma!
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Mon, Nov. 20

Definition 21.3. (Attaching an interval) Given a space X and two points x 6= y 2 X, we get
a continuous map ↵ : S0 �! X with ↵(0) = x and ↵(1) = y. There is the standard inclusion
S0 ,! D1 = [�1, 1], and we write X [

↵

D1 for the pushout

S0 //

↵

✏✏

D1

✏✏

X
◆

X // X [
↵

D1

The image ◆(Int(D1)) is referred to as a 1-cell and is sometimes denoted e1. Thus the above space,
which is described as obtained by attaching an 1-cell to X, is also written X [

↵

e1 or X [
↵

e1.

Generalizing the construction from last time, for any n, we have the standard inclusion
Sn�1 ,! Dn as the boundary.

Definition 21.4. Given a space X and a continuous map ↵ : Sn�1 �! X, we write X [
↵

Dn for
the pushout

Sn�1 //

↵

✏✏

Dn

✏✏
X

◆

X // X [
↵

Dn

The image ◆(Int(Dn)) is referred to as an n-cell and is sometimes denoted en. Thus the above space,
which is described as obtained by attaching an n-cell to X, is also written X [

↵

en or X [
↵

en.

In general, this attaching process does not disturb the interiors of the cells, as follows from the
following, which you are asked to show on homework.

Proposition 21.5. If g : A ,! Y is injective, then
◆
X

: X �! X [
A

Y is also injective.

Example 21.6. If A = ;, then X [
A

Y = X q Y .

Example 21.7. If A = ⇤, then X [
A

Y = X _ Y .

Example 21.8. If A ✓ X is a subspace and Y = ⇤, then X [
A

⇤ ⇠= X/A.

By the way, Proposition 21.5 is not only true for injections.

Proposition 21.9. (i) If f : A �! X is surjective, then so is ◆
Y

: Y �! X [
A

Y .
(ii) If f : A �! X is a homeomorphism, then so is ◆

Y

: Y �! X [
A

Y .

Proof. We prove only (ii). We show that if f is a homeo-
morphism, then Y satisfies the same universal property as
the pushout. Consider the test diagram to the right. We
have no choice but to set � = '

2

. Does this make the di-
agram commute? We need to check that � � g � f�1 = '

1

.
Well,

� � g � f�1 = '
2

� g � f�1 = '
1

� f � f�1 = '
1

.

⌅

A
g //

f

✏✏

Y

'2

✏✏

X
f

�1
//

'1 ..

A
g // Y

�

��
Z

21.2. Cell complexes. We use the idea of attaching cells (using a pushout) to inductively build
up the idea of a cell complex or CW complex.

Definition 21.10. A CW complex is a space built in the following way
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(1) Start with a discrete set X0 (called the set of 0-cells, or the 0-skeleton)
(2) Given the (n � 1)-skeleton Xn�1, the n-skeleton Xn is obtained by attaching n-cells to

Xn�1.
(3) The space X is the union of the Xn, topologized using the “weak topology”. This means

that U ✓ X is open if and only if U \Xn is open for all n.

The third condition is not needed if X = Xn for some n (so that X has no cells in higher
dimensions). On the other hand, the ’W’ in the name CW complex refers to item 3 (”weak
topology”). The ’C’ in CW complex refers to the Closure finite property: the closure of any cell is
contained in a finite union of cells. We will come back to this point later.

According to condition (2), the n-skeleton is obtained from the (n � 1)-skeleton by attaching
cells. Often, we think of this as attaching one cell at a time, but we can equally well attach them
all at once, yielding a pushout diagram

a

E
n

Sn�1

✏✏

//
a

E
n

Dn

✏✏
Xn�1 // Xn

for each n. The maps Sn�1 �! Xn�1 are called the attaching maps for the cells, and the resulting
maps Dn �! Xn are called the characteristic maps.

Example 21.11. (1) Sn. We have already discussed two CW structures on S2. The first has
X0 a singleton and a single n-cell attached. The other had a single 0-cell and single 1-cell
but two 2-cells attached. There is a third option, which is to start with two 0-cells, attach
two 1-cells to get a circle, and then attach two 2-cells to get S2.

The first and third CW structures generalize to any Sn. There is a minimal CW structure
having a single 0-cell and single n-cell, and there is another CW structure have two cells in
every dimension up to n.
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