Mon, Nov. 27

Last time, we were discussing CW complexes, and we considered two different CW structures on S^{n}. We continue with more examples.
(2) (Torus) In general, a product of two CW complexes becomes a CW complex. We will describe this in the case $S^{1} \times S^{1}$, where S^{1} is built using a single 0 -cell and single 1-cell.

Start with a single 0-cell, and attach two 1-cells. This gives $S^{1} \vee S^{1}$. Now attach a single 2 -cell to the 1 -skeleton via the attaching map ψ defined as follows. Let us refer to the two circles in $S^{1} \vee S^{1}$ as ℓ and r. We then specify $\psi: S^{1} \longrightarrow S^{1} \vee S^{1}$ by $\operatorname{lr} \ell^{-1} r^{-1}$. What we mean is to trace out ℓ on the first quarter of the domain, to trace out r on the second quarter, to run ℓ in reverse on the third quarter, and finally to run r in reverse on the final quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map $\psi: S^{1} \longrightarrow S^{1} \vee S^{1}$ is surjective, so is $\iota_{D^{2}}: D^{2} \longrightarrow X$. Even better, it is a quotient map. On the other hand, we also have a quotient map $I^{2} \longrightarrow T^{2}$, and using the homeomorphism $I^{2} \cong D^{2}$ from before, we can see that the quotient relation in the two cases agrees. We say that this homeomorphism $T^{2} \cong X$ puts a cell structure on the torus. There is a single 0 -cell (a vertex), two 1-cells (the two circles in $S^{1} \vee S^{1}$), and a single 2-cell.
(3) $\mathbb{R} \mathbb{P}^{p}$. Let's start with \mathbb{R}^{2}. Recall that one model for this space was as the quotient of D^{2}, where we imposed the relation $x \sim-x$ on the boundary. If we restrict our attention to the boundary S^{1}, then the resulting quotient is $\mathbb{R} \mathbb{P}^{1}$, which is again a circle. The quotient map $q: S^{1} \longrightarrow S^{1}$ is the map that winds twice around the circle. In complex coordinates, this would be $z \mapsto z^{2}$. The above says that we can represent $\mathbb{R P}^{2}$ as the pushout

If we build the 1 -skeleton S^{1} using a single 0 -cell and a single 1-cell, then $\mathbb{R} \mathbb{P}^{2}$ has a single cell in dimensions ≤ 2.

More generally, we can define $\mathbb{R P}^{n}$ as a quotient of D^{n} by the relation $x \sim-x$ on the boundary S^{n-1}. This quotient space of the boundary was our original definition of $\mathbb{R} \mathbb{P}^{n-1}$. It follows that we can describe $\mathbb{R P}^{n}$ as the pushout

Thus $\mathbb{R P}^{n}$ can be built as a CW complex with a single cell in each dimension $\leq n$.
(4) $\mathbb{C P}^{n}$. Recall that $\mathbb{C P}^{1} \cong S^{2}$. We can think of this as having a single 0 -cell and a single 2-cell. We defined $\mathbb{C P}^{2}$ as the quotient of S^{3} by an action of S^{1} (thought of as $U(1)$). Let $\eta: S^{3} \longrightarrow \mathbb{C P}^{1}$ be the quotient map. What space do we get by attaching a 4 -cell to $\mathbb{C P}^{1}$ by the map η ? Well, the map η is a quotient, so the pushout $\mathbb{C P}^{1} \cup_{\eta} D^{4}$ is a quotient of D^{4} by the S^{1}-action on the boundary.

Wed, Nov. 29

Now include D^{4} into $S^{5} \subseteq \mathbb{C}^{3}$ via the map

$$
\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, \sqrt{1-\sum x_{i}^{2}}, 0\right)
$$

(This would be a hemi-equator.) We have the diagonal $U(1)$ action on S^{5}. But since any nonzero complex number can be rotated onto the positive x-axis, the image of φ meets every S^{1}-orbit in S^{5}, and this inclusion induces a homeomorphism on orbit spaces

$$
D^{4} / U(1) \cong S^{5} / U(1)=\mathbb{C P}^{2}
$$

We have shown that $\mathbb{C P}^{2}$ has a cell structure with a single 0 -cell, 2 -cell, and 4 -cell.
This story of course generalizes to show that any $\mathbb{C P}^{n}$ can be built as a CW complex having a cell in each even dimension.

Let's talk about some of the (nice!) topological properties of CW complexes.

21.3. Niceness.

Theorem 21.12 (Hatcher, Prop A.3). Any $C W$ complex X is normal.
Even better,
Theorem 21.13 (Lee, Theorem 5.22). Every CW complex is paracompact.
Proposition 21.14. Any $C W$ complex X is locally path-connected.
Proof. Let $x \in X$ and let U be any open neighborhood of x. We want to find a path-connected neighborhood V of x in U. Recall that a subset $V \subseteq X$ is open if and only if $V \cap X^{n}$ is open for all n. We will define V by specifying open subsets $V^{n} \subseteq X^{n}$ with $V^{n+1} \cap X^{n}=V^{n}$ and then setting $V=\cup V^{n}$.

Suppose that x is contained in the (interior of the) cell e_{i}^{n}. We set $V^{k}=\emptyset$ for $k<n$. We specify V_{n} by defining $\Phi_{j}^{-1}\left(V^{n}\right)$ for each n-cell e_{j}^{n}. If $j \neq i$, we set $\Phi_{j}^{-1}\left(V_{n}\right)=\emptyset$. We define $\Phi_{i}^{-1}\left(V_{n}\right)$ to be an open n-disc around $\Phi_{i}^{-1}(x)$ whose closure is contained in $\Phi_{i}^{-1}(U)$. Now suppose we have defined V^{k} for some $k \geq n$. Again, we define V^{k+1} by defining each $\Phi_{j}^{-1}\left(V^{k+1}\right)$. By assumption, $\overline{\Phi_{j}^{-1}\left(V^{k}\right)} \subseteq \partial D^{k+1} \subseteq \Phi_{j}^{-1}(U)$. By the Tube lemma, there is an $\epsilon>0$ such that (using radial coordinates) $\Phi_{j}^{-1}\left(V^{k}\right) \times(1-\epsilon, 1] \subset \Phi_{j}^{-1}(U)$. We define

$$
\Phi_{j}^{-1}\left(V^{k+1}\right)=\Phi_{j}^{-1}\left(V^{k}\right) \times[1,1-\epsilon / 2),
$$

which is path-connected by induction. Note that this forces $\Phi_{j}^{-1}\left(V^{k+1}\right)$ to be empty if the image of the attaching map for the cell e_{j}^{k+1} does not meet V_{k}. Now by construction V^{k+1} is the overlapping union of path-connected sets and therefore path-connected. This also guarantees that $\overline{V^{k+1}} \subset$ $U \cap X^{k+1}$, allowing the induction to proceed.

Proposition 21.15 (Hatcher, A.1). Any compact subset K of a $C W$ complex X meets finitely many cells.

Corollary 21.16. Any $C W$ complex has the closure-finite property, meaning that the closure of any cell meets finitely many cells.

Proof. The closure of e_{i} is $\Phi_{i}\left(D_{i}^{n_{i}}\right)$, which is compact. The result follows from the proposition.

Corollary 21.17.

(i) $A C W$ complex X is compact if and only if it has finitely many cells.
(ii) $A C W$ complex X is locally compact if and only if the collection \mathcal{E} of cells is locally finite.

Part 6. Homotopy and the fundamental group

22. Номотору

Fri, Dec. 1

We have studied a number of topological properties of spaces, but how would we use these to distinguish $S^{2}, \mathbb{R P}^{2}$, and T^{2} ? These are all compact, connected 2 -manifolds. It turns out that the fundamental group will allow us to distinguish these spaces. This is the start of algebraic topology. We first introduce the idea of a homotopy.
Definition 22.1. Given maps f and $g: X \longrightarrow Y$, a homotopy h between f and g is a map $h: X \times I \longrightarrow Y(I=[0,1])$ such that $f(x)=h(x, 0)$ and $g(x)=h(x, 1)$. We say f and g are homotopic if there exists a homotopy between them (and write $h: f \simeq g$).
Example 22.2. Let $f=\mathrm{id}: \mathbb{R} \longrightarrow \mathbb{R}$ and take $g: \mathbb{R} \longrightarrow \mathbb{R}$ to be the constant map $g(x)=0$. Then a homotopy $h: f \simeq g$ is given by

$$
h(x, t)=x(1-t) .
$$

Check that $h(x, 0)=f(x)$ and $h(x, 1)=g(x)$. Since f is homotopic to a constant map, we say that f is null-homotopic (and h is a null-homotopy).
Example 22.3. Consider $f=$ id $: S^{1} \longrightarrow S^{1}$ and the map $g: S^{1} \longrightarrow S^{1}$ defined by $g(\cos (\theta), \sin (\theta))=(\cos (2 \theta), \sin (2 \theta))$. Thinking of S^{1} as the complex numbers of unit norm, the map g can alternatively be described as $g(z)=z^{2}$. Then the maps f and g are not homotopic. Furthermore, neither is null-homotopic. (Though we won't be able to show this until next semester.)

Proposition 22.4. The property of being homotopic defines an equivalence relation on the set of maps $X \longrightarrow Y$.
Proof. (Reflexive): Need to show $f \simeq f$. Use the constant homotopy defined by $h(x, t)=f(x)$ for all t.
(Symmetric): If $h: f \simeq g$, we need a homotopy from g to f. Define $H(x, t)=h(x, 1-t)$ (reverse time).
(Transitive): If $h_{1}: f_{1} \simeq f_{2}$ and $h_{2}: f_{2} \simeq f_{3}$, we define a new homotopy h from f_{1} to f_{3} by the formula

$$
h(x, t)=\left\{\begin{array}{cc}
h_{1}(x, 2 t) & 0 \leq t \leq 1 / 2 \\
h_{2}(x, 2 t-1) & 1 / 2 \leq t \leq 2 .
\end{array}\right.
$$

We write $[X, Y]$ for the set of homotopy classes of maps $X \longrightarrow Y$.
Proposition 22.5. (Interaction of composition and homotopy) Suppose given maps $X \xrightarrow{f} Y \xrightarrow{g} Z$ and $X \xrightarrow{f^{\prime}} Y \xrightarrow{g^{\prime}} Z$. If $f \simeq f^{\prime}$ and $g \simeq g^{\prime}$ then $g \circ f \simeq g^{\prime} \circ f^{\prime}$.

Proof. We will show that $g \circ f \simeq g^{\prime} \circ f$. The required homotopy is given by

$$
H(x, t)=h^{\prime}(f(x), t) .
$$

It is easily verified that $H(x, 0)=g \circ f(x)$ and $H(x, 1)=g^{\prime} \circ f(x)$. Why is the map $H: X \times I \longrightarrow Z$ continuous? It is the composition of the continuous maps

$$
X \times I \xrightarrow{f \times \mathrm{id}} Y \times I \xrightarrow{h^{\prime}} Z .
$$

That the map $f \times$ id is continuous can be easily verified using the universal property.

Definition 22.6. A map $f: X \longrightarrow Y$ is a homotopy equivalence if there is a map $g: Y \longrightarrow X$ such that both composites $f \circ g$ and $g \circ f$ are homotopic to the identity maps. We say that spaces X and Y are homotopy equivalent if there exists some homotopy equivalence between them, and we write $X \simeq Y$.

Remark 22.7. It is clear that any homeomorphism is a homotopy equivalence, since then both composites are equal to the idenitity maps.

The following example shows that the converse is not true.
Example 22.8. The (unique) map $f: \mathbb{R} \longrightarrow *$, where $*$ is the one-point space, is a homotopy equivalence. Pick any map $g: * \longrightarrow \mathbb{R}$ (for example, the inclusion of the origin). Then $f \circ g=\mathrm{id}$. The other composition $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$ is contant, but we have already seen last time that the identity map of \mathbb{R} is null-homotopic. So $\mathbb{R} \simeq *$. The same argument works equally well to show that $\mathbb{R}^{n} \simeq *$ for any n. Even more generally, if X is a convex subset of \mathbb{R}^{n}, then $X \simeq *$.

Here's some more terminology: any space that is homotopy-equivalent to the one-point space is said to be contractible. As we have just seen in the example above, this is equivalent to the statement that the identity map is null-homotopic.

More generally, we can show that any two maps $f, g: X \rightrightarrows \mathbb{R}^{n}$ are homotopic. The straight-line homotopy between f and g is given by

$$
h(x, t)=(1-t) f(x)+t g(t) .
$$

We will see next semester that the spaces $S^{2}, \mathbb{R P}^{2}$, and T^{2} are not homotopy-equivalent (and therefore not homeomorphic).

