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’Mon, Nov. 27‘

Last time, we were discussing CW complexes, and we considered two different CW struc-
tures on S™. We continue with more examples.

(Torus) In general, a product of two CW complexes becomes a CW complex. We will
describe this in the case S* x S, where S! is built using a single 0-cell and single 1-cell.

Start with a single O-cell, and attach two 1-cells. This gives S'V S'. Now attach a single
2-cell to the 1-skeleton via the attaching map v defined as follows. Let us refer to the two
circles in S' Vv S! as ¢ and 7. We then specify ¢ : S' — S v S by ¢ré~'r=1. What
we mean is to trace out £ on the first quarter of the domain, to trace out r on the second
quarter, to run £ in reverse on the third quarter, and finally to run r in reverse on the final
quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map

¥ ST — StV S is surjective, so is tp2 : D> — X. Even better, it is a quotient map.
On the other hand, we also have a quotient map 1> — T2, and using the homeomorphism
I? = D? from before, we can see that the quotient relation in the two cases agrees. We
say that this homeomorphism 72 22 X puts a cell structure on the torus. There is a single
0-cell (a vertex), two 1-cells (the two circles in S* v S'), and a single 2-cell.
RP™. Let’s start with RP?. Recall that one model for this space was as the quotient of D?,
where we imposed the relation  ~ —x on the boundary. If we restrict our attention to the
boundary S', then the resulting quotient is RP', which is again a circle. The quotient map
q:S' — S'is the map that winds twice around the circle. In complex coordinates, this
would be z — 22. The above says that we can represent RP? as the pushout

Sl v D2

4

St — > RP?

If we build the 1-skeleton S! using a single O-cell and a single 1-cell, then RP? has a single
cell in dimensions < 2.

More generally, we can define RP" as a quotient of D™ by the relation x ~ —x on the
boundary S”~!. This quotient space of the boundary was our original definition of RP"~!,
It follows that we can describe RP™ as the pushout

Sn—l L Dn

4

RP*~! —~ RP"

Thus RP" can be built as a CW complex with a single cell in each dimension < n.

CP™. Recall that CP' = S2. We can think of this as having a single O-cell and a single
2-cell. We defined CP? as the quotient of S by an action of S! (thought of as U(1)). Let
n: S — CP! be the quotient map. What space do we get by attaching a 4-cell to CP!
by the map n? Well, the map 7 is a quotient, so the pushout CP* Uy D* is a quotient of D*
by the S'-action on the boundary.

Wed, Nov. 29‘
Now include D* into S° C C3 via the map

(21,39, m3,74) = (w1, T2, T3, 24,1/ 1 = > _ 22,0).
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(This would be a hemi-equator.) We have the diagonal U(1) action on S°. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ¢ meets
every S'-orbit in S°, and this inclusion induces a homeomorphism on orbit spaces

DYU(1) =8%/U(1) = CP%

We have shown that CP? has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CP" can be built as a CW complex
having a cell in each even dimension.

Let’s talk about some of the (nice!) topological properties of CW complexes.

21.3. Niceness.

Theorem 21.12 (Hatcher, Prop A.3). Any CW complex X is normal.
Even better,

Theorem 21.13 (Lee, Theorem 5.22). Every CW complex is paracompact.

Proposition 21.14. Any CW complex X is locally path-connected.

Proof. Let x € X and let U be any open neighborhood of z. We want to find a path-connected
neighborhood V' of x in U. Recall that a subset V' C X is open if and only if V N X" is open for all
n. We will define V' by specifying open subsets V" C X™ with V"*! 0 X" = V™ and then setting
V=uvm

Suppose that z is contained in the (interior of the) cell e?. We set V¥ = () for k < n. We specify
V., by defining CI>]-_1(V”) for each n-cell €. If j # i, we set <I>j_1(Vn) = (. We define ®; '(V},) to
be an open n-disc around ®;!(z) whose closure is contained in ®; (/). Now suppose we have
defined V* for some k > n. Again, we define V**! by defining each (I>J-_1(Vk+1). By assumption,

<I>J71(Vk) C 9Dk C <I>]71(U). By the Tube lemma, there is an ¢ > 0 such that (using radial
coordinates) <I>j_1(Vk) x (1—¢€1] C <I>J-_1(U). We define

(VA = 71 (VE) x [1,1 - ¢/2),

which is path-connected by induction. Note that this forces @;l(V’“H) to be empty if the image of
k+1
J

union of path-connected sets and therefore path-connected. This also guarantees that Vk+1 C
U N X*+1 allowing the induction to proceed. |

the attaching map for the cell e does not meet Vj,. Now by construction V*+1 is the overlapping

Proposition 21.15 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely
many cells.

Corollary 21.16. Any CW complex has the closure-finite property, meaning that the closure of
any cell meets finitely many cells.

Proof. The closure of e; is ®;(D;"), which is compact. The result follows from the proposition. M

Corollary 21.17.
(i) A CW complex X is compact if and only if it has finitely many cells.
(ii)) A CW complex X is locally compact if and only if the collection € of cells is locally finite.
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Part 6. Homotopy and the fundamental group

22. HomoToPYy

We have studied a number of topological properties of spaces, but how would we use these to
distinguish S2?, RP?, and T?? These are all compact, connected 2-manifolds. It turns out that
the fundamental group will allow us to distinguish these spaces. This is the start of algebraic
topology. We first introduce the idea of a homotopy.

Definition 22.1. Given maps f and g : X — Y, a homotopy h between f and ¢ is a map
h:XxI—Y (I =][0,1]) such that f(z) = h(z,0) and g(x) = h(z,1). We say f and g are
homotopic if there exists a homotopy between them (and write h : f ~ g).

Example 22.2. Let f =id : R — R and take g : R — R to be the constant map g(z) = 0.
Then a homotopy h : f ~ g is given by

h(z,t) =z(1 —1).

Check that h(z,0) = f(z) and h(x,1) = g(x). Since f is homotopic to a constant map, we say that
f is null-homotopic (and A is a null-homotopy).

Example 22.3. Consider f = id : S' — S' and the map g : S' — S' defined by
g(cos(0),sin(#)) = (cos(26),sin(260)). Thinking of S! as the complex numbers of unit norm, the
map ¢ can alternatively be described as g(z) = z2. Then the maps f and g are not homotopic.

Furthermore, neither is null-homotopic. (Though we won’t be able to show this until next semester. )

Proposition 22.4. The property of being homotopic defines an equivalence relation on the set of
maps X — Y.

Proof. (Reflexive): Need to show f ~ f. Use the constant homotopy defined by h(z,t) = f(x)
for all ¢.

(Symmetric): If h: f ~ g, we need a homotopy from g to f. Define H(z,t) = h(z,1—1t) (reverse
time).

(Transitive): If hy : fi ~ fo and hy : fo ~ f3, we define a new homotopy h from f; to f3 by the

formula
B hi(z,2t)  0<t<1/2
I, ) = { ho(z,2t —1) 1/2<t<2.

We write [X,Y] for the set of homotopy classes of maps X — Y.

Proposition 22.5. (Interaction of composition and homotopy) Suppose given maps X i> y % 7
and X v 25 7. If f~f and g~ g then go f~g o f'.
Proof. We will show that go f ~ ¢’ o f. The required homotopy is given by

H(z,t) =N (f(x),1).
It is easily verified that H(x,0) = go f(x) and H(x,1) = ¢'o f(z). Why is themap H : X x[ — Z
continuous? It is the composition of the continuous maps

Xx1 D%y rtog

That the map f X id is continuous can be easily verified using the universal property. |
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Definition 22.6. A map f: X — Y is a homotopy equivalence if thereisamap g: Y — X
such that both composites f o g and go f are homotopic to the identity maps. We say that spaces
X and Y are homotopy equivalent if there exists some homotopy equivalence between them,
and we write X ~ Y.

Remark 22.7. It is clear that any homeomorphism is a homotopy equivalence, since then both
composites are equal to the idenitity maps.

The following example shows that the converse is not true.

Example 22.8. The (unique) map f : R — %, where * is the one-point space, is a homotopy
equivalence. Pick any map g : * — R (for example, the inclusion of the origin). Then f o g = id.
The other composition go f : R — R is contant, but we have already seen last time that the
identity map of R is null-homotopic. So R =~ *. The same argument works equally well to show
that R™ ~ x for any n. Even more generally, if X is a convex subset of R, then X ~ x.

Here’s some more terminology: any space that is homotopy-equivalent to the one-point space
is said to be contractible. As we have just seen in the example above, this is equivalent to the
statement that the identity map is null-homotopic.

More generally, we can show that any two maps f, g : X == R" are homotopic. The straight-line
homotopy between f and g is given by

h(z,t) = (1 —1) f(x) + tg(t).
We will see next semester that the spaces S%, RP2, and T? are not homotopy-equivalent (and
therefore not homeomorphic).
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