
Mon, Nov. 27
Last time, we were discussing CW complexes, and we considered two di↵erent CW struc-

tures on Sn. We continue with more examples.
(2) (Torus) In general, a product of two CW complexes becomes a CW complex. We will

describe this in the case S1 ⇥ S1, where S1 is built using a single 0-cell and single 1-cell.
Start with a single 0-cell, and attach two 1-cells. This gives S1_S1. Now attach a single

2-cell to the 1-skeleton via the attaching map  defined as follows. Let us refer to the two
circles in S1 _ S1 as ` and r. We then specify  : S1 �! S1 _ S1 by `r`�1r�1. What
we mean is to trace out ` on the first quarter of the domain, to trace out r on the second
quarter, to run ` in reverse on the third quarter, and finally to run r in reverse on the final
quarter.

We claim that the resulting CW complex X is the torus. Since the attaching map
 : S1 �! S1 _ S1 is surjective, so is ◆

D

2 : D2 �! X. Even better, it is a quotient map.
On the other hand, we also have a quotient map I2 �! T 2, and using the homeomorphism
I2 ⇠= D2 from before, we can see that the quotient relation in the two cases agrees. We
say that this homeomorphism T 2 ⇠= X puts a cell structure on the torus. There is a single
0-cell (a vertex), two 1-cells (the two circles in S1 _ S1), and a single 2-cell.

(3) RPn. Let’s start with RP2. Recall that one model for this space was as the quotient of D2,
where we imposed the relation x ⇠ �x on the boundary. If we restrict our attention to the
boundary S1, then the resulting quotient is RP1, which is again a circle. The quotient map
q : S1 �! S1 is the map that winds twice around the circle. In complex coordinates, this
would be z 7! z2. The above says that we can represent RP2 as the pushout

S1

◆ //

q

✏✏✏✏

D2

✏✏✏✏

S1 // RP2

If we build the 1-skeleton S1 using a single 0-cell and a single 1-cell, then RP2 has a single
cell in dimensions  2.

More generally, we can define RPn as a quotient of Dn by the relation x ⇠ �x on the
boundary Sn�1. This quotient space of the boundary was our original definition of RPn�1.
It follows that we can describe RPn as the pushout

Sn�1

◆ //

q

✏✏✏✏

Dn

✏✏✏✏
RPn�1 // RPn

Thus RPn can be built as a CW complex with a single cell in each dimension  n.
(4) CPn. Recall that CP1 ⇠= S2. We can think of this as having a single 0-cell and a single

2-cell. We defined CP2 as the quotient of S3 by an action of S1 (thought of as U(1)). Let
⌘ : S3 �! CP1 be the quotient map. What space do we get by attaching a 4-cell to CP1

by the map ⌘? Well, the map ⌘ is a quotient, so the pushout CP1 [
⌘

D4 is a quotient of D4

by the S1-action on the boundary.

Wed, Nov. 29

Now include D4 into S5 ✓ C3 via the map
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(This would be a hemi-equator.) We have the diagonal U(1) action on S5. But since any
nonzero complex number can be rotated onto the positive x-axis, the image of ' meets
every S1-orbit in S5, and this inclusion induces a homeomorphism on orbit spaces

D4/U(1) ⇠= S5/U(1) = CP2.

We have shown that CP2 has a cell structure with a single 0-cell, 2-cell, and 4-cell.
This story of course generalizes to show that any CPn can be built as a CW complex

having a cell in each even dimension.

Let’s talk about some of the (nice!) topological properties of CW complexes.

21.3. Niceness.

Theorem 21.12 (Hatcher, Prop A.3). Any CW complex X is normal.

Even better,

Theorem 21.13 (Lee, Theorem 5.22). Every CW complex is paracompact.

Proposition 21.14. Any CW complex X is locally path-connected.

Proof. Let x 2 X and let U be any open neighborhood of x. We want to find a path-connected
neighborhood V of x in U . Recall that a subset V ✓ X is open if and only if V \Xn is open for all
n. We will define V by specifying open subsets V n ✓ Xn with V n+1 \Xn = V n and then setting
V = [V n.

Suppose that x is contained in the (interior of the) cell en
i

. We set V k = ; for k < n. We specify
V
n

by defining ��1

j

(V n) for each n-cell en
j

. If j 6= i, we set ��1

j

(V
n

) = ;. We define ��1

i

(V
n

) to

be an open n-disc around ��1

i

(x) whose closure is contained in ��1

i

(U). Now suppose we have
defined V k for some k � n. Again, we define V k+1 by defining each ��1

j

(V k+1). By assumption,

��1

j

(V k) ✓ @Dk+1 ✓ ��1

j

(U). By the Tube lemma, there is an ✏ > 0 such that (using radial

coordinates) ��1

j

(V k)⇥ (1� ✏, 1] ⇢ ��1

j

(U). We define

��1

j

(V k+1) = ��1

j

(V k)⇥ [1, 1� ✏/2),

which is path-connected by induction. Note that this forces ��1

j

(V k+1) to be empty if the image of

the attaching map for the cell ek+1

j

does not meet V
k

. Now by construction V k+1 is the overlapping

union of path-connected sets and therefore path-connected. This also guarantees that V k+1 ⇢
U \Xk+1, allowing the induction to proceed. ⌅

Proposition 21.15 (Hatcher, A.1). Any compact subset K of a CW complex X meets finitely
many cells.

Corollary 21.16. Any CW complex has the closure-finite property, meaning that the closure of
any cell meets finitely many cells.

Proof. The closure of e
i

is �
i

(Dn

i

i

), which is compact. The result follows from the proposition. ⌅

Corollary 21.17.
(i) A CW complex X is compact if and only if it has finitely many cells.
(ii) A CW complex X is locally compact if and only if the collection E of cells is locally finite.
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Part 6. Homotopy and the fundamental group

22. Homotopy

Fri, Dec. 1

We have studied a number of topological properties of spaces, but how would we use these to
distinguish S2, RP2, and T 2? These are all compact, connected 2-manifolds. It turns out that
the fundamental group will allow us to distinguish these spaces. This is the start of algebraic
topology. We first introduce the idea of a homotopy.

Definition 22.1. Given maps f and g : X �! Y , a homotopy h between f and g is a map
h : X ⇥ I �! Y (I = [0, 1]) such that f(x) = h(x, 0) and g(x) = h(x, 1). We say f and g are
homotopic if there exists a homotopy between them (and write h : f ' g).

Example 22.2. Let f = id : R �! R and take g : R �! R to be the constant map g(x) = 0.
Then a homotopy h : f ' g is given by

h(x, t) = x(1� t).

Check that h(x, 0) = f(x) and h(x, 1) = g(x). Since f is homotopic to a constant map, we say that
f is null-homotopic (and h is a null-homotopy).

Example 22.3. Consider f = id : S1 �! S1 and the map g : S1 �! S1 defined by
g(cos(✓), sin(✓)) = (cos(2✓), sin(2✓)). Thinking of S1 as the complex numbers of unit norm, the
map g can alternatively be described as g(z) = z2. Then the maps f and g are not homotopic.
Furthermore, neither is null-homotopic. (Though we won’t be able to show this until next semester.)

Proposition 22.4. The property of being homotopic defines an equivalence relation on the set of
maps X �! Y .

Proof. (Reflexive): Need to show f ' f . Use the constant homotopy defined by h(x, t) = f(x)
for all t.

(Symmetric): If h : f ' g, we need a homotopy from g to f . Define H(x, t) = h(x, 1� t) (reverse
time).

(Transitive): If h
1

: f
1

' f
2

and h
2

: f
2

' f
3

, we define a new homotopy h from f
1

to f
3

by the
formula

h(x, t) =

⇢

h
1

(x, 2t) 0  t  1/2
h
2

(x, 2t� 1) 1/2  t  2.

⌅
We write [X,Y ] for the set of homotopy classes of maps X �! Y .

Proposition 22.5. (Interaction of composition and homotopy) Suppose given maps X
f�! Y

g�! Z

and X
f

0
�! Y

g

0
�! Z. If f ' f 0 and g ' g0 then g � f ' g0 � f 0.

Proof. We will show that g � f ' g0 � f . The required homotopy is given by

H(x, t) = h0(f(x), t).

It is easily verified that H(x, 0) = g�f(x) and H(x, 1) = g0�f(x). Why is the map H : X⇥I �! Z
continuous? It is the composition of the continuous maps

X ⇥ I
f⇥id���! Y ⇥ I

h

0
�! Z.

That the map f ⇥ id is continuous can be easily verified using the universal property. ⌅
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Definition 22.6. A map f : X �! Y is a homotopy equivalence if there is a map g : Y �! X
such that both composites f � g and g � f are homotopic to the identity maps. We say that spaces
X and Y are homotopy equivalent if there exists some homotopy equivalence between them,
and we write X ' Y .

Remark 22.7. It is clear that any homeomorphism is a homotopy equivalence, since then both
composites are equal to the idenitity maps.

The following example shows that the converse is not true.

Example 22.8. The (unique) map f : R �! ⇤, where ⇤ is the one-point space, is a homotopy
equivalence. Pick any map g : ⇤ �! R (for example, the inclusion of the origin). Then f � g = id.
The other composition g � f : R �! R is contant, but we have already seen last time that the
identity map of R is null-homotopic. So R ' ⇤. The same argument works equally well to show
that Rn ' ⇤ for any n. Even more generally, if X is a convex subset of Rn, then X ' ⇤.

Here’s some more terminology: any space that is homotopy-equivalent to the one-point space
is said to be contractible. As we have just seen in the example above, this is equivalent to the
statement that the identity map is null-homotopic.

More generally, we can show that any two maps f, g : X ◆ Rn are homotopic. The straight-line
homotopy between f and g is given by

h(x, t) = (1� t)f(x) + tg(t).

We will see next semester that the spaces S2, RP2, and T 2 are not homotopy-equivalent (and
therefore not homeomorphic).
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