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10.3. Hausdor↵ Spaces. Another important property of metric spaces is the Hausdor↵ property.

Definition 10.16. A space X is said to be Hausdor↵ (also called T

2

) if, given any two points x

and y in X, there are disjoint open sets U and V with x 2 U and y 2 V .

This is a somewhat mild “separation property” that is held by many spaces in practice and that
also has a number of nice consequences.

The Hausdor↵ property forces sequences to behave well, in the following sense.

Proposition 10.17. In a Hausdor↵ space, a sequence cannot converge simultaneously to more
than one point.

Proof. Suppose x

n

! x and x

n

! y. Every neighborhood of x contains a tail of x
n

, as does any
neighborhood of y. It follows that no neighborhood of x is disjoint from any neighborhood of y.
Since X is Hausdor↵, this forces x = y. ⌅
Proposition 10.18. Every metric space is Hausdor↵.

Proof. If x 6= y, let d = d(x, y) > 0. Then the balls of radius d/2 centered at x and y are the needed
disjoint neighborhoods. ⌅

However, of the (many, many) topologies on a finite set, the only one that is Hausdor↵ is the
discrete topology. Indeed, if points are closed, then every subset is closed, as it is a finite union of
points.

Here is one more nice consequence of this property.

Proposition 10.19. If X is Hausdor↵, then points are closed in X. (A space is called T

1

if points
are closed.)

Proof. The neighborhood crtierion for the complement X \ {x} is easy to verify. ⌅

11. Gluing Lemma

In Calculus, you saw functions defined piecewise, and one-sided limits were typically employed
to establish continuity. There is an analogue of this type of construction for spaces.

Lemma 11.1 (Glueing/Pasting Lemma). Let X = A[B, where either (1) both A and B are open
in X or (2) both A and B are closed in X. Then a function f : X �! Y is continuous if and only
if the restrictions f|A and f|B are both continuous.

Proof. ()) We already proved this in Proposition 8.4.
(() We give the proof assuming they are both open. Let V ✓ Y be open. We wish to show that

f

�1(V ) ✓ X is open. Let’s restrict to A. We have f

�1(V ) \A = f

�1

|A (V ). Since f|A is continuous,

it follows that f�1

|A (V ) is open (in A). Since A is open in X, it follows that f�1

|A (V ) is also open in

X. The same argument shows that f�1(V ) \B is open in X. It follows that their unoin, which is
f

�1(V ), is open in X. ⌅
Example 11.2. For example, we can use this to paste together the continuous absolute value
function f(x) = |x|, as a function R �! R. We get this by pasting the continuous functions
◆ : [0,1) �! R, x 7! x, and (�1, 0] ⇠= [0,1) �! R, x 7! �x.

Example 11.3. Let’s look at an example of a discontinuous function, for example

f(x) =

⇢

1 x 6= 1
2 x = 1.
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We can get this by pasting together two constant functions, but the domains are R \ {1} and {1},
one of which is open but not closed, and the other of which is closed but not open.

Example 11.4. Let X = [0, 1] [ [2, 3], given the subspace topology from R. Note that in this
case each of the subsets A = [0, 1] and B = [2, 3] is both open and closed, so we can specify a
continuous function on X by giving a pair of continuous functions, one on A and the other on B.

11.1. Homeomorphisms. Finally, we start to look at the idea of sameness. Two sets are thought
of as the same if there is a bijection between them. A bijection is simply an invertible function.
More generally, we have the following idea.

Definition 11.5. A “morphism” f : X �! Y is said to be an isomorphism if there is a g : Y �!
X such that g � f = id

X

and f � g = id
Y

.

Again, an isomorphism between sets is simply a bijection. In topology, this is called a homeo-
morphism. In other words, a homeomorphism is a continuous function with a continuous inverse.
Since such a map is invertible, clearly it must be one-to-one and onto, but it is not true that every
continuous bijection is a homeomorphism. Before we look at some examples, let’s look at some
non-examples.

Example 11.6. (1) Any time a set is equipped with two topologies, one of which is a refinement
of the other, the identity map is a continuous bijection (in one direction) that is not a
homeomorphism. For instance, we have the following such examples

id : R �! R
cofinite

, id : R
cocountable

�! R
cofinite

id : R
discrete

�! R
(2) Consider the exponential map exp : [0, 1) �! S

1 given by exp(x) = e

2⇡ix. This is a con-
tinuous bijection, but it is not a homeomorphism. Since homeomorphisms have continuous
inverses, they must take open sets to open sets and closed sets to closed sets. But we
see that exp does not take the open set U = [0, 1/2) to an open set in S

1. The point
exp(0) = (1, 0) has no neighborhood that is contained in exp(U).

Example 11.7. (1) Consider tan : (0, ⇡
2

) �! (0,1). This is a continuous bijection with
continuous inverse (given by arctangent)

(2) Consider ln : (0,1) �! R. This is a continuous bijection with inverse e

x. Composing
homeomorphisms produces homeomorphisms, and we therefore get a homeomorphism

(0, 1)
⇠
=�! (0,

⇡

2
)

⇠
=�! (0,1)

⇠
=�! R.

(3) We similarly get a homeomorphism tan : [0, ⇡
2

)
⇠
=�! [0,1). It follows that we have

[0, 1) ⇠= [0,1) and (0, 1] ⇠= [0,1).

(4) One can similarly get Bn

r

(x) ⇠= Rn for any n, r, and x.

The above example shows that there really are only three intervals, up to homeomorphism: the
open interval, the half-open interval, and the closed interval.

We say that two spaces are homeomorphic if there is a homeomorphism between them (and
write X

⇠= Y as above). This is the notion of “sameness” for spaces. One of the major overarching
questions for this course will be: how can we tell when two spaces are the same or are actually
di↵erent?

A standard way to show that two spaces are not homeomorphic is to find a property that one has
and the other does not. For instance every metric space is Hausdor↵, so no non-Hausdor↵ space is
the “same” as a metric space. But what property distinguishes the 3 interval types above? As we
learn about more and more properties of spaces, this question will become easier to answer.
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In the exponential example from last time, we noted that homeomorphisms must take open sets
to open sets. Such a map is called an open map. Similarly, a closed map takes closed sets to
closed sets.

Proposition 11.8. Let f : X �! Y be a continuous bijection. The following are equivalent:

(1) f is a homeomorphism
(2) f is an open map
(3) f is a closed map

If we drop the assumption that f is bijective, it is no longer true that being an open map is
equivalent to being a closed map. For example, the inclusion (0, 1) �! R is open but not closed,
and the inclusion [0, 1] �! R is closed but not open.

Fri, Sept. 22

Part 3. Constructions

12. Products

Put on your hard hats! We turn now to the construction phase. In section 3, we considered the
product of metric spaces: let’s define the product for topological spaces. We already know what
property it should satisfy: we want it to be true that mapping continuously from some space Z

into the product X ⇥Y should be the same as mapping separately to X and to Y . Another way to
describe this is that we want X ⇥ Y to be the “universal” example of a space with a pairs of maps
to X and Y .

Well, if the projection p

X

: X ⇥ Y �! X is to be continuous, we need p

�1

X

(U) = U ⇥ Y to be
open whenever U ✓ X is open. Similarly, we need X ⇥ V to be open if V ✓ Y is open. We are
forced to include these open sets, but we don’t want to throw in anything extra that we don’t need.
In other words, we want the product topology on X⇥Y to be the coarsest topology containing the
sets U ⇥ Y and X ⇥ V .

Note that if we consider the collecion

B = {U ⇥ Y | U ✓ X open} [ {X ⇥ V | V ✓ Y open},
this cannot be a basis because it fails the intersection property. A typical intersection is

(U ⇥ Y ) \ (X ⇥ V ) = U ⇥ V,

and if we consider all sets of this form, we do get a basis.

Definition 12.1. Given spaces X and Y , the product topology on X ⇥ Y has basis given by
sets of the form U ⇥ V , where U and V are open in X and Y , respectively.

This satisfies the universal property of a product. We have engineered the definition to make
this so, but we will check this anyway. First, we make a little detour.

We pointed out above that if we considered the collection

B = {U ⇥ Y } [ {X ⇥ V },
we would not have a basis, as the intersection property failed. We remedied this by considering
instead intersections of elements of B. This is a useful idea that shows up often.

Given a set X, a collection C of subsets of X is called a prebasis for a topology on X if the
collection covers X. Actually, in all of the textbooks, this is called a subbasis, but that is a terrible
name, since it suggests that it is a basis. I will try to stick with the better name of prebasis.

We can then get a basis from the prebasis by considering finite intersections of prebasis elements.
20



Example 12.2. The collection of rays (a,1) and (�1, b) give a prebasis for the standard topology
on R.

We introduced the product topology above and mentioned the universal property, but let’s spend
a little bit of time with it to really nail down the concept.

Theorem-Definition 12.3. Let X and Y be spaces. Then X⇥Y ,
together with the projection maps

p

X

: X ⇥ Y �! X and p

Y

: X ⇥ Y �! Y,

satisfies the following “universal property”: given any space Z and
maps g : Z �! X and h : Z �! Y , there is a unique continuous
map f : Z �! X ⇥ Y such that

g = p

X

� f, h = p

Y

� f.

X

Z

g

00

h ..

9!f //
X ⇥ Y

p

X

::

p

Y

$$
Y

Proof. The uniqueness is clear: if there exists such a continuous map f , then the conditions force
this to be f = (g, h). The only question is whether or not f is continuous. Consider a typical basis
element U ⇥ V for the product topology on X ⇥ Y . Then

f

�1(U ⇥ V ) = {z 2 Z | f(z) 2 U ⇥ V } = {z 2 Z | g(z) 2 U and h(z) 2 V }
= g

�1(U) \ h

�1(V ),

which is an intersection of open sets and therefore open. ⌅

Ok, so we showed that X ⇥ Y satisfies this property, but why do we call this a “universal
property”?

Proposition 12.4. Suppose W is a space with continuous maps q

X

: W �! X and q

Y

: W �! Y

also satisfying the property of the product. Then W is homeomorphic to X ⇥ Y .

Proof. The universal property for X ⇥ Y gives us a map f : W �! X ⇥ Y .

X

W

q

X

00

q

Y ..

9!f //
X ⇥ Y

p

X

::

p

Y

$$
Y

But W also has a universal property, so we get a map ' : X ⇥ Y �! W as well.

X

X ⇥ Y

p

X

00

p

Y ..

9!' //
W

q

X

<<

q

Y

""
Y
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Now make Pacman eat Pacman!

X

W

q

X

..

q

Y

00

f //
X ⇥ Y

p

X

66

p

Y

((

' //
W

q

X

>>

q

Y

  
Y

We have a big diagram, but if we ignore all dotted lines, there is an obvious horizontal map
W �! W to fill in the diagram, namely the id

W

. Since the universal property guarantees that
there is a unique way to fill it in, we find that ' � f = id

W

. Reversing the pacmen gives the other
equality f � ' = id

X⇥Y

. In other words, f is a homeomorphism, and ' = f

�1. ⌅

This argument may seem strange the first time you see it, but it is a typical argument that
applies any time you define an object via a universal property. The argument shows that any
two objects satisfying the universal property must be “the same”.

Proposition 12.5. Let f : X �! Y and f

0 : X 0 �! Y

0 be continuous. Then the product map
f ⇥ f

0 : X ⇥X

0 �! Y ⇥ Y

0 is also continuous.

Proof. This follows very easily from the universal property. If we want to map continuously to
Y ⇥ Y

0, it su�ces to specify continuous maps to Y and Y

0. The continuous map X ⇥X

0 �! Y is
the composition

X ⇥X

0 p

X��! X

f�! Y,

and the other needed map is the composition

X ⇥X

0 p

X

0��! X

0 f

0
�! Y

0
.

⌅

Ok, so we understand X ⇥ Y as a topological space. What about a product of more than
two spaces? Well, if we have a finite collection X

1

, . . . , X

n

of spaces, the product topology on
X

1

⇥ · · ·⇥X

n

has basis given by the U

1

⇥ · · ·⇥U

n

, or equivalently, prebasis given by the p

�1

j

(U
j

).
Note that this is equivalent because the basis element U

1

⇥ · · ·⇥ U

n

, is a finite intersection of the
prebasis elements p�1

j

(U
j

).
But what about the product of an arbitrary number of spaces? Here, the property we want is

that whenever we have a space Z and maps f
j

: Z �! X

j

for all i, then there should be a unique

continuous map f : Z �!
Y

j2J
X

j

such that p
j

� f = f

j

.

Just as for finite products, we want the projection maps p
j

:
Y

j2J
�! X

j

to be continuous. This

forces each p

�1

j

(U
j

) to be continuous, and we can again choose these for a prebasis. We thus get a

basis consisting of finite intersections p�1

j1
(U

j1

) \ · · · \ p

�1

j

k

(U
j

k

).

Definition 12.6. Given spaces X
j

, one for each j 2 J , the product topology on
Y

j2J
X

j

has basis

consisting of the p

�1

j1
(U

j1

) \ · · · \ p

�1

j

k

(U
j

k

).
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