Mon, Oct. 2

Proof. This is even easier than for products. First, X_i always embeds as a subspace of the coproduct, so it follows that X_i is Hausdorff if the coproduct is as well. On the other hand, suppose all X_i are Hausdorff and suppose that $x \neq y$ are points of $\coprod_i X_i$. Either x and y come from different X_i 's, in which case the X_i 's themselves serve as the disjoint neighborhoods. The alternative is that x and

which case the X_i 's themselves serve as the disjoint heighborhoods. The alternative is that x and y live in the same Hausdorff X_i , but then we can find disjoint neighborhoods in X_i .

14. QUOTIENTS

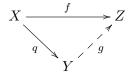
The next important construction is that of a quotient, or identification space.

The general setup is that we have a surjective map $q: X \longrightarrow Y$, which we view as making an identification of points in X. More precisely, suppose that we have an equivalence relation \sim on X. We can consider the set X/\sim of equivalence classes in X. There is a natural surjective map $q: X \longrightarrow X/\sim$ which takes $x \in X$ to its equivalence class.

And in fact every surjective map is of this form. Suppose that $q: X \longrightarrow Y$ is surjective. We define a relation on X by saying that $x \sim x'$ if and only if q(x) = q(x'). Then the function $X/ \sim \longrightarrow Y$ sending the class of x to q(x) is a bijection.

We want to mimic the above situation in topology, but to understand what this should mean, we first look at the universal property of the quotient for sets. This says: if $f: X \longrightarrow Z$ is a function that is constant on the equivalence classes in X, then there is a (unique) factorization $g: X/ \sim \longrightarrow Z$ with $g \circ q = f$.

We want to have a similar setup in topology. Said in the equivalence relation framework, given a space X and a relation \sim on X, we want a continuous map $q: X \longrightarrow Y$ such that given any space Z with a continuous map $f: X \longrightarrow Z$ which is constant on equivalence classes, there is a unique continuous map $g: Y \longrightarrow Z$ such that $g \circ q = f$.



By considering the cases in which Z is a set with the trivial topology, so that maps to Z are automatically continuous, we can see that on the level of sets $q: X \longrightarrow Y$ must be $X \longrightarrow X/\sim$. It remains only to specify the topology on $Y = X/\sim$.

We want the topological quotient to be the universal example of a continuous map out of X which is constant on equivalence classes. Since we want to construct maps *out of* Y, this suggests we should include as many open sets as possible in Y. This leads to the following definition.

Definition 14.1. We say that a surjective map $q: X \longrightarrow Y$ is a **quotient map** if $V \subseteq Y$ is open if and only if $q^{-1}(V)$ is open in X.

One implication is the definition of continuity, but the other is given by our desire to include as many opens as we can.

Proposition 14.2. (Universal property of the quotient) Let $q: X \longrightarrow Y$ be a quotient map. If Z is any space, and $f: X \longrightarrow Z$ is any continuous map that is constant on the fibers² of q, then there exists a unique continuous $g: Y \longrightarrow Z$ such that $g \circ q = f$.

 $^{^{2}}$ A "fiber" is simply the preimage of a point.

Proof. It is clear how g must be defined: g(y) = f(x) for any $x \in q^{-1}(y)$. It remains to show that g is continuous. Let $W \subseteq Z$ be open. We want $g^{-1}(W) \subseteq Y$ to be open as well. By the definition of a quotient map, $g^{-1}(W)$ is open if and only if $q^{-1}(g^{-1}(W)) = (g \circ q)^{-1}(W) = f^{-1}(W)$ is open, so we are done by continuity of f.

Example 14.3. Define $q : \mathbb{R} \longrightarrow \{-1, 0, 1\}$ by

$$q(x) = \left\{ \begin{array}{cc} 0 & x = 0 \\ \frac{|x|}{x} & x \neq 0. \end{array} \right.$$

What is the resulting topology on $\{-1, 0, 1\}$? The points -1 and 1 are open, and the only open set containing 0 is the whole space.

Note that this example shows that a quotient of a Hausdorff space need not be Hausdorff.

Proposition 14.4. Let $q: X \longrightarrow Y$ be a continuous, surjective, open map. Then q is a quotient map. The same is true if q is closed instead of open.

Proof. One implication is simply the definition of continuity. For the other, suppose that $V \subseteq Y$ is a subset such that $q^{-1}(V) \subseteq X$ is open. Then $q(q^{-1}(V))$ is open since q is open. Finally, we have $V = q(q^{-1}(V))$ since q is surjective.

The converse is not true, however, as the next example shows.

Example 14.5. Consider $q; \mathbb{R} \longrightarrow [0, \infty)$ given by

$$q(x) = \begin{cases} 0 & x \le 0\\ x & x \ge 0. \end{cases}$$

The quotient topology on $[0, \infty)$ is the same as the subspace topology it gets from \mathbb{R} . But this is not an open map, since the image of (-2, -1) is $\{0\}$, which is not open.

14.1. Saturated Open Sets. We discussed last time the fact that a quotient map need not be open. Nevertheless, there is a class of open sets that are always carried to open sets.

Definition 14.6. Let $q: X \longrightarrow Y$ be a continuous surjection. We say a subset $A \subseteq X$ is **saturated** (with respect to q) if it is of the form $q^{-1}(V)$ for some subset $V \subseteq Y$.

Wed, Oct. 4

It follows that A is saturated if and only if $q^{-1}(q(A)) = A$. Recall that a **fiber** of a map $q: X \longrightarrow Y$ is the preimage of a single point. Then another description is that A is saturated if and only if it contains all fibers that it meets.

Proposition 14.7. A continuous surjection $q: X \rightarrow Y$ is a quotient map if and only if it takes saturated open sets to saturated open sets.

Proof. Exercise.

Example 14.8. (Collapsing a subspace) Let $A \subseteq X$ be a subspace. We define a relation on X as follows: $x \sim y$ if both are points in A or if neither is in A and x = y. Here, we have one equivalence class for the subset A, and every point outside of A is its own equivalence class. Standard notation for the set X/\sim of equivalence classes under this relation is X/A. The universal property can be summed up as saying that any map on X which is constant on A factors through the quotient X/A.

For example, we considered last time the example $\mathbb{R}/(-\infty, 0] \cong [0, \infty)$.

Example 14.9. Consider $\partial I \subseteq I$. The exponential map $e: I \longrightarrow S^1$ is constant on ∂I , so we get an induced continuous map $\varphi: I/\partial I \longrightarrow S^1$, which is easily seen to be a bijection. In fact, it is

a homeomorphism. Once we learn about compactness, it will be easy to see that this is a closed map.

We show instead that it is open. A basis for $I/\partial I$ is given by q(a, b) with 0 < a < b < 1 and by $q([0, a) \cup (b, 1])$ with again 0 < a < b < 1. Since both are taken to basis elements for the subspace topology on S^1 , it follows that φ is a homeomorphism.

Example 14.10. Generalizing the previous example, for any closed ball $D^n \subseteq \mathbb{R}^{n+1}$, we can consider the quotient $D^n/\partial D^n$. Exercise: define a surjective continuous map

 $q: D^n \longrightarrow S^n$

taking the origin to the south pole and the boundary to the north pole. This then defines a continuous bijection $D^n/\partial D^n \longrightarrow S^n$, and we will see later in the course that this is automatically a homeomorphism.

Fri, Oct. 6

Exam day