Math 551 - Topology I Supplemental Problems Fall 2017

- 1. In this problem, you will give a CW structure for $S^1 \times S^2$.
 - (a) Show that $\partial I^3 = (\partial I^1 \times I^2) \cup (I^1 \times \partial I^2)$ in I^3 .
 - (b) Consider S^1 and S^2 with their minimal CW structures, each having two cells. Build a 3-dimensional CW complex X as follows. Start with a single 0-cell, and attach both a 1-cell and a 2-cell to this point. The result is $S^1 \vee S^2$. Now attach a 3-cell, using (a) to help you define the attaching map.
 - (c) Find a homeomorphism $X \xrightarrow{\cong} S^1 \times S^2$. (Since X is compact and $S^1 \times S^2$ is Hausdorff, it suffices to find a continuous bijection.)
- 2. The Möbius band is the quotient $M = I^2 / \sim$, where $(0, t) \sim (1, 1 t)$. Find a CW structure on *M*.
- 3. The Klein bottle is the quotient $K = I^2 / \sim$ where $(0, t) \sim (1, 1 t)$ and $(x, 0) \sim (x, 1)$. Find a CW structure on *K*.
- 4. For spaces *X* and *Y*, let [X, Y] denote the set of homotopy classes of maps $X \to Y$.
 - (a) Show that if *Y* is contractible then [X, Y] contains a single element.
 - (b) Show that if *X* is contractible and *Y* is path-connected (and nonempty), then [X, Y] contains a single element.
 - (c) Show more generally that if X is contractible, then [X, Y] is in bijective correspondence with the path-components of Y.