1. In this problem, you will give a CW structure for $S^1 \times S^2$.

(a) Show that $\partial I^3 = (\partial I^1 \times I^2) \cup (I^1 \times \partial I^2)$ in I^3.

(b) Consider S^1 and S^2 with their minimal CW structures, each having two cells. Build a 3-dimensional CW complex X as follows. Start with a single 0-cell, and attach both a 1-cell and a 2-cell to this point. The result is $S^1 \vee S^2$. Now attach a 3-cell, using (a) to help you define the attaching map.

(c) Find a homeomorphism $X \cong \sim S^1 \times S^2$. (Since X is compact and $S^1 \times S^2$ is Hausdorff, it suffices to find a continuous bijection.)

2. The Möbius band is the quotient $M = I^2 / \sim$, where $(0, t) \sim (1, 1 - t)$. Find a CW structure on M.

3. The Klein bottle is the quotient $K = I^2 / \sim$ where $(0, t) \sim (1, 1 - t)$ and $(x, 0) \sim (x, 1)$. Find a CW structure on K.

4. For spaces X and Y, let $[X, Y]$ denote the set of homotopy classes of maps $X \to Y$.

(a) Show that if Y is contractible then $[X, Y]$ contains a single element.

(b) Show that if X is contractible and Y is path-connected (and nonempty), then $[X, Y]$ contains a single element.

(c) Show more generally that if X is contractible, then $[X, Y]$ is in bijective correspondence with the path-components of Y.