Math 751 - Vector Bundles Homework 1 Fall 2018

1. Let $p : E \longrightarrow B$ be a vector bundle of rank *n*. Suppose that $U, V \subseteq B$ are overlapping open subsets on which the bundle is trivial. Then the composition

$$(U \cap V) \times \mathbb{R}^n \xrightarrow{\varphi_U^{-1}} p^{-1}(U \cap V) \xrightarrow{\varphi_V} (U \cap V) \times \mathbb{R}^n$$

is of the form

$$(x,\mathbf{v})\mapsto(x,g_{U,V}(x)\mathbf{v}),$$

where $g_{U,V} : U \cap V \longrightarrow Gl_n(\mathbb{R})$ is continuous. (These are called **transition functions**.) Show that these transition functions satisfy

- (a) $g_{U,U} = \mathrm{id}$
- (b) $g_{V,U} = g_{U,V}^{-1}$
- (c) $g_{V,W}g_{U,V} = g_{U,W}$.
- 2. Let *B* have a covering by open sets $\{U_{\alpha}\}$ and let $\{g_{\alpha,\beta} : U_{\alpha} \cap U_{\beta} \longrightarrow Gl_{n}(\mathbb{R})\}$ be continuous maps satisfying (a)-(c) above. Define *E* by

$$E\colon=\big(\coprod_{\alpha}U_{\alpha}\times\mathbb{R}^n\big)/\sim,$$

where $(x, \mathbf{v}) \sim (x, g_{\alpha,\beta}(\mathbf{v}))$ for $x \in U_{\alpha} \cap U_{\beta}$. Fill in the details to make *E* into a rank *n* vector bundle over *B*.

3. (a) Let $p \in \mathbb{R}^n$. According to Taylor's theorem (in \mathbb{R}^n), any smooth f can be written

$$f(\mathbf{x}) = f(\mathbf{p}) + \sum_{i} \frac{\partial f}{\partial x_i}(\mathbf{p})(x_i - p_i) + R_1^f(\mathbf{x}),$$

where the remainder R_1^f is of the form

$$R_1^f(\mathbf{x}) = \sum_{i,j} (x_i - p_i)(x_j - p_j)g(\mathbf{x})$$

Use this to show that if λ is a derivation at p on $C^{\infty}(\mathbb{R}^n, \mathbb{R})$, then

$$\lambda = \sum_{i=1}^n \lambda_i \frac{\partial}{\partial x_i} \Big|_{x=p} ,$$

where $\lambda_i = \lambda(x_i)$ and $x_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ is the *i*th coordinate function.

(b) Conclude that the map v → ∂_v(−), defined just above Definition 1.11 in the notes, is an isomorphism from the space of geometric tangent vectors (at *p*) in ℝⁿ to the space of derivations (at *p*) on C[∞](ℝⁿ, ℝ).