Math 751 - Vector Bundles Homework 2 Fall 2018

1. Let *E* and *E'* be rank *n* vector bundles over *B*, with transition functions $g_{U,V}$ and $g'_{U,V}$. Show that an isomorphism $f : E \cong E'$ corresponds bijectively to a collection of maps $\{f_U \mid U \longrightarrow Gl_n(\mathbb{R})\}$ such that

$$f_V \circ g_{U,V} = g'_{U,V} \circ f_U.$$

2. (a) Write PS(n) for the set of positive-definite symmetric $n \times n$ matrices. Show that there is a homeomorphism

$$Gl_n(\mathbb{R})\cong O(n)\times PS(n).$$

- (b) Use part (a) and problem 1 to show directly that the structure group of real vector bundle can be reduced to O(n).
- 3. On worksheet 4, you found that the transition functions for the canonical line bundle on \mathbb{RP}^n under the standard open cover $\{U_i\}$ are given by $g_{ij}(\ell) = \frac{x_j}{x_i}$. Construct an isomorphism to a line bundle whose transition functions all live in $O(1) = \{\pm 1\}$.