Math 751 - Vector Bundles Worksheet 10 Fall 2018

- 1. Let $x = \sum_{i=0}^{n} x_n$ be an element of $H^*(X; \mathbf{F}_2)$, where $x_0 = 1$ and the degree of x_i is *i*. Show *x* is invertible in $H^*(X; \mathbf{F}_2)$.
- 2. Let γ_n be the canonical line bundle over \mathbb{RP}^n . Note that γ_n is defined as a subbundle of $\underline{n+1}$. Let *E* be the orthogonal complement of γ_n . Find the total Stiefel-Whitney class of *E*.
- 3. Recall that if $M \subseteq N$ is a submanifold, then the tangent bundle τ_N of N, when restricted to the submanifold M, splits as $(\tau_N)_{|M} \cong \tau_M \oplus \nu$, where ν is the normal bundle to the embedding $M \hookrightarrow N$.

We showed in class that $w(\tau_{\mathbb{RP}^n}) = (1 + x)^{n+1}$. Find $w(\nu)$, where ν is the embedding $\mathbb{RP}^n \hookrightarrow \mathbb{RP}^{n+1}$. Which bundle is ν ?

- 4. An embedding $M \hookrightarrow N$ (or more generally, immersion) induces an injection on tangent bundles. For example, an immerion $\mathbb{RP}^n \hookrightarrow \mathbb{R}^n + k$ gives an inclusion $\tau_{\mathbb{RP}^n} \hookrightarrow \underline{n+k}$. Use the total Stiefel-Whitney class of $\tau_{\mathbb{RP}^n}$ and the normal bundle ν to establish the following lower bounds on k:
 - (a) When n = 4, then $k \ge 3$.
 - (b) When n = 8, then $k \ge 7$.
 - (c) More generally, when $n = 2^{\ell}$, then $k \ge 2^{\ell} 1$.