Math 751 - Vector Bundles
 Worksheet 11
 Fall 2018

1. We established a bijection between the number of (Schubert) cells of $G r_{n}\left(\mathbb{R}^{k}\right)$ of dimension r and the number of (unordered) partitions of r into at most n positive integers, each of which is $\leq k-n$,

$$
\left(s_{1}, \ldots, s_{n}\right) \leftrightarrow\left\{s_{1}-1, \ldots, s_{n}-n\right\},
$$

where on the right we ignore any zeros.
Consider the inclusion $G r_{n}\left(\mathbb{R}^{k}\right) \hookrightarrow G r_{n+1}\left(\mathbb{R}^{k+1}\right)$ given by $X \mapsto \mathbb{R} \oplus X$. What is the image of a Schubert cell $e\left(s_{1}, \ldots, s_{n}\right)$ under this inclusion? What about under the inclusion $X \mapsto X \oplus \mathbb{R}$?
2. (a) Use the fact $\mathbb{R} \mathbb{P}^{\infty} \vee \mathbb{R} \mathbb{P}^{\infty} \hookrightarrow \mathbb{R} \mathbb{P}^{\infty} \times \mathbb{R} \mathbb{P}^{\infty}$ is an isomorphism on $\mathrm{H}^{1}\left(-; \mathbb{F}_{2}\right)$ to conclude that

$$
w_{1}\left(p_{1}^{*} \gamma \otimes p_{2}^{*} \gamma\right)=w_{1}\left(p_{1}^{*} \gamma\right)+w_{1}\left(p_{2}^{*} \gamma\right)
$$

Conclude that for any two line bundles L_{1} and L_{2} on an arbitrary space,

$$
w_{1}\left(L_{1} \otimes L_{2}\right)=w_{1}\left(L_{1}\right)+w_{1}\left(L_{2}\right)
$$

(b) Suppose that E is a rank 2 bundle and F is rank 1 . Find the total Stiefel-Whitney class $w(E \otimes F)$.
(Hint: by the splitting principle, it suffices to consider the case where E splits $E \cong$ $L_{1} \oplus L_{2}$ as a sum of line bundles.)
(c) Try the same problem when E is rank 3 .
3. A theorem of Borel states that

$$
\mathrm{H}^{*}\left(G r_{n}\left(\mathbb{R}^{k}\right) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[w_{1}, \ldots, w_{n}\right] / I_{n, k}
$$

where $I_{n, k}$ is the ideal generated by the homogeneous components of $w\left(\gamma^{n}\right)^{-1}$ in degrees $k-n+1, \ldots, k$. Compute

$$
\mathrm{H}^{*}\left(G r_{2}\left(\mathbb{R}^{3}\right) ; \mathbb{F}_{2}\right) \quad \text { and } \quad \mathrm{H}^{*}\left(G r_{2}\left(\mathbb{R}^{4}\right) ; \mathbb{F}_{2}\right)
$$

