Math 751 - Vector Bundles Worksheet 12 Fall 2018

- 1. Show that the Thom space of τ_{S^2} is \mathbb{CP}^2 .
- Recall that, if the base space is compact, then one model for the Thom space of a bundle *E* is the one-point compactification of the total space *E*. Let *L* denote the dual to γ¹ on RPⁿ. Then *L* is (non-canonically) isomorphic to γ¹.
 - (a) Show that the total space of (L)^{⊕k} on ℝPⁿ is ℝP^{n+k} − ℝP^{k-1}.
 (Hint: A vector λ in the fiber of (L^k) over ℓ is a linear function ℓ → ℝ^k. Show that the graph of this linear function is a line in ℝ^{(n+1)+k}.)
 - (b) Conclude that $Th_{\mathbb{RP}^n}(L^k) \cong \mathbb{RP}^{n+k}/\mathbb{RP}^{k-1}$.
- 3. (For those that know about Steenrod operations ...)

Consider the map $(\mathbb{RP}^{\infty})^{\times n} \longrightarrow Gr_n(\mathbb{R}^{\infty})$ classifying $\bigoplus_n \gamma^1$. On cohomology, this sends w_n to the *n*th elementary symmetric polynomial. Use this map to determine the action of the Steenrod operations Sq^k on the classes w_i . (Do this for small values of *n*, say up to 4 or 5).