Math 751 - Vector Bundles Worksheet 3
 Fall 2018

1. Let E and E^{\prime} be vector bundles over X.
(a) Show that $E \oplus E^{\prime}$ is a product in the category $\operatorname{Vect}_{\mathbb{R}}(X)$ of vector bundles over X.
(b) Show that $E \oplus E^{\prime}$ is a coproduct in the category $\operatorname{Vect}_{\mathbb{R}}(X)$ of vector bundles over X.
2. Recall from HW1 that a bundle can be specified by its transition functions

$$
\left\{g_{U, V}: U \cap V \longrightarrow G l_{n}(\mathbb{R})\right\}
$$

which relate to the composition

$$
(U \cap V) \times \mathbb{R}^{n} \stackrel{\varphi_{u}^{-1}}{\longleftrightarrow} p^{-1}(U \cap V) \xrightarrow{\varphi_{V}}(U \cap V) \times \mathbb{R}^{n}
$$

according to the formula

$$
\varphi_{V} \varphi_{U}^{-1}(x, \mathbf{v})=\left(x, g_{U, V}(\mathbf{v})\right)
$$

Let E and E^{\prime} be vector bundles over X of rank n and n^{\prime}, with transition functions $\left\{g_{U, V}\right\}$ and $\left\{g_{U, V}^{\prime}\right\}$.
(a) Find the transition functions for $E \oplus E^{\prime}$.
(b) Find the transition functions for $E \otimes E^{\prime}$.
(c) Find the transition functions for E^{*}.
(d) Find the transition functions for $\operatorname{Hom}\left(E, E^{\prime}\right)$. (Hint: recall that $\operatorname{Hom}\left(E, E^{\prime}\right) \cong E^{*} \otimes$ E^{\prime}.)

