Math 751 - Vector Bundles Worksheet 3 Fall 2018

- 1. Let E and E' be vector bundles over X.
 - (a) Show that $E \oplus E'$ is a product in the category **Vect**_{\mathbb{R}}(X) of vector bundles over X.
 - (b) Show that $E \oplus E'$ is a coproduct in the category $\mathbf{Vect}_{\mathbb{R}}(X)$ of vector bundles over X.
- 2. Recall from HW1 that a bundle can be specified by its **transition functions**

$$\{g_{U,V}: U \cap V \longrightarrow Gl_n(\mathbb{R})\},\$$

which relate to the composition

$$(U \cap V) \times \mathbb{R}^n \stackrel{\varphi_U^{-1}}{\longleftarrow} p^{-1}(U \cap V) \stackrel{\varphi_V}{\longrightarrow} (U \cap V) \times \mathbb{R}^n$$

according to the formula

$$\varphi_V \varphi_U^{-1}(x, \mathbf{v}) = (x, g_{U,V}(\mathbf{v})).$$

Let *E* and *E'* be vector bundles over *X* of rank *n* and *n'*, with transition functions $\{g_{U,V}\}$ and $\{g'_{U,V}\}$.

- (a) Find the transition functions for $E \oplus E'$.
- (b) Find the transition functions for $E \otimes E'$.
- (c) Find the transition functions for E^* .
- (d) Find the transition functions for Hom(E,E'). (Hint: recall that $\text{Hom}(E,E')\cong E^*\otimes E'$.)