Math 751 - Vector Bundles
Worksheet 3
Fall 2018

1. Let E and E' be vector bundles over X.

 (a) Show that $E \oplus E'$ is a product in the category $\text{Vect}_\mathbb{R}(X)$ of vector bundles over X.

 (b) Show that $E \oplus E'$ is a coproduct in the category $\text{Vect}_\mathbb{R}(X)$ of vector bundles over X.

2. Recall from HW1 that a bundle can be specified by its transition functions
 \[
 \{g_{U,V} : U \cap V \to \text{GL}_n(\mathbb{R})\},
 \]
 which relate to the composition
 \[
 (U \cap V) \times \mathbb{R}^n \xleftarrow{\varphi_U^{-1}} p^{-1}(U \cap V) \xrightarrow{\varphi_V} (U \cap V) \times \mathbb{R}^n
 \]
 according to the formula
 \[
 \varphi_V \varphi_U^{-1}(x, v) = (x, g_{U,V}(v)).
 \]
 Let E and E' be vector bundles over X of rank n and n', with transition functions $\{g_{U,V}\}$ and $\{g'_{U,V}\}$.

 (a) Find the transition functions for $E \oplus E'$.

 (b) Find the transition functions for $E \otimes E'$.

 (c) Find the transition functions for E^*.

 (d) Find the transition functions for $\text{Hom}(E, E')$. (Hint: recall that $\text{Hom}(E, E') \cong E^* \otimes E'$.)