Math 751 - Vector Bundles Worksheet 4 Fall 2018

- 1. Let γ_1^n be the canonical line bundle over \mathbb{RP}^n .
 - (a) Let $\{U_0, U_1\}$ be the open cover of \mathbb{RP}^1 , where U_i is the space of lines in \mathbb{R}^2 not contained in the hyperplane $x_i = 0$. Recall that a trivialization of γ_1^1 over U_i is given by

 $p^{-1}(U_i) \cong U_i \times \mathbb{R}, \qquad (\ell, (v_0, v_1)) \mapsto (\ell, v_i).$

Find a formula for the transition function g_{01} .

- (b) Consider \mathbb{RP}^2 with its corresponding open cover $\{U_0, U_1, U_2\}$. Find the transition functions g_{01} and g_{12} .
- 2. Let *E* and *E'* be vector bundles over *X*. Show that a section of Hom(*E*, *E'*) corresponds precisely to a bundle map $\varphi : E \longrightarrow E'$.
- 3. (The Picard group) For any space *X*, let Pic(*X*) denote the set of isomorphism classes of line bundles on *X*. Show that this forms an abelian group under tensor product, where the inverse is given by the dual bundle.