Math 751 - Vector Bundles Worksheet 4
 Fall 2018

1. Let γ_{1}^{n} be the canonical line bundle over $\mathbb{R} \mathbb{P}^{n}$.
(a) Let $\left\{U_{0}, U_{1}\right\}$ be the open cover of $\mathbb{R} \mathbb{P}^{1}$, where U_{i} is the space of lines in \mathbb{R}^{2} not contained in the hyperplane $x_{i}=0$. Recall that a trivialization of γ_{1}^{1} over U_{i} is given by

$$
p^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{R}, \quad\left(\ell,\left(v_{0}, v_{1}\right)\right) \mapsto\left(\ell, v_{i}\right)
$$

Find a formula for the transition function g_{01}.
(b) Consider $\mathbb{R} \mathbb{P}^{2}$ with its corresponding open cover $\left\{U_{0}, U_{1}, U_{2}\right\}$. Find the transition functions g_{01} and g_{12}.
2. Let E and E^{\prime} be vector bundles over X. Show that a section of $\operatorname{Hom}\left(E, E^{\prime}\right)$ corresponds precisely to a bundle map $\varphi: E \longrightarrow E^{\prime}$.
3. (The Picard group) For any space X, let $\operatorname{Pic}(X)$ denote the set of isomorphism classes of line bundles on X. Show that this forms an abelian group under tensor product, where the inverse is given by the dual bundle.

