Math 751 - Vector Bundles Worksheet 5 Fall 2018

1. Recall the group completion construction: if *M* is an abelian semigroup, we define

 $\widetilde{M} = \mathbb{Z}\{M\} / \sim, \qquad [m_1] + [m_2] \sim [m_1 + m_2].$

Show that this satisfies the following universal property: any homomorphism from M to an abelian group A factors uniquely through \widetilde{M} . In other words, show that

 $\widetilde{(-)}$: AbSemGp \longrightarrow AbGp

is *left adjoint* to the inclusion $AbGp \hookrightarrow AbSemGp$.

2. Let *M* be an abelian semigroup. Let $\widehat{M} := (M \times M) / \sim$, where

 $(m_1, m_2) \sim (n_1, n_2)$ if $m_1 + n_2 + k = n_1 + m_2 + k$,

for some $k \in M$. The ordered pair (m_1, m_2) plays the role of $m_1 - m_2$. Show that $\widehat{M} \cong \widetilde{M}$.

- 3. Show that if *A* is a semiring then \widetilde{A} is a ring.
- 4. Compute KO(*) and KU(*).
- 5. Consider the set \mathbf{Set}_{C_2} of (isomorphism classes) of finite C_2 -sets. This is a semiring under disjoint union and cartesion product. Write $A(C_2)$ for the group completion, which is known as the **Burnside ring** of C_2 . Describe this ring explicitly (as a quotient of a polynomial ring, for example).