Math 751 - Vector Bundles
 Worksheet 8
 Fall 2018

1. Suppose that S^{n} is parallelizable (has trivial tangent bundle), with trivialization $\varphi: S^{n} \times$ $\mathbb{R}^{n} \cong T S^{n}$. Given $\mathbf{x} \in S^{n}$, write

$$
p_{\mathbf{x}}: S^{n} \xrightarrow{\cong} \widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}, \quad q_{\mathbf{x}}=p_{\mathbf{x}}^{-1}: \widehat{\mathbb{R}^{n}} \xrightarrow{\cong} S^{n}
$$

for stereographic projection and its inverse, so that $p_{\mathbf{x}}(-\mathbf{x})=\mathbf{0}$ and $p_{\mathbf{x}}(\mathbf{x})=\infty$.
Define $\varphi: T S^{n} \longrightarrow S^{n}$ by letting $\varphi(\mathbf{x}, \mathbf{y})$ be the point on the line through $-\mathbf{x}$ and $\mathbf{x}+\mathbf{y}$ (recall that $\mathbf{y} \perp \mathbf{x}$) that lies on S^{n}. Define $v: S^{n} \times \mathbb{R}^{n} \longrightarrow S^{n}$ by the composition

$$
S^{n} \times \mathbb{R}^{n} \cong T S^{n} \xrightarrow{\varphi} S^{n} .
$$

Then this extends to a map $\bar{v}: S^{n} \times \widehat{\mathbb{R}^{n}} \longrightarrow S^{n}$. Now pick some $\mathbf{e} \in S^{n}$ and define $\mu: S^{n} \times S^{n} \longrightarrow S^{n}$ by the formula

$$
S^{n} \times S^{n} \xrightarrow{\text { id } \times p_{-\mathbf{e}}} S^{n} \times \widehat{\mathbb{R}^{n}} \xrightarrow{\bar{v}} S^{n} .
$$

Show that this makes S^{n} an H-space with unit e. (The Hopf invariant one theorem now implies that S^{n} can only be parallelizable when $n=0,1,3,7$.)
2. Suppose that \mathbb{R}^{n} is a division algebra (has a bilinear product μ with no zero divisors). Pick a nonzero vector $\mathbf{e} \in \mathbb{R}^{n}$. Show that there is a division algebra structure in which \mathbf{e} is the unit. Pick a linear isomorphism $f: \mathbb{R}^{n} \cong \mathbb{R}^{n}$ such that $f(\mu(\mathbf{e}, \mathbf{e}))=\mathbf{e}$. Then $\bar{\mu}=f \circ \mu$ takes (\mathbf{e}, \mathbf{e}) to \mathbf{e}. Write $\ell(\mathbf{x})=\bar{\mu}(\mathbf{x}, \mathbf{e})$ and $r(\mathbf{x})=\bar{\mu}(\mathbf{e}, \mathbf{x})$. Show that

$$
v(\mathbf{x}, \mathbf{y})=\bar{\mu}\left(\ell^{-1}(\mathbf{x}), r^{-1}(\mathbf{y})\right)
$$

is a division algebra structure on \mathbb{R}^{n} with unit element \mathbf{e}.
3. Consider the function $c: \operatorname{Vect}_{\mathbb{R}}(X) \longrightarrow \operatorname{Vect}_{\mathbb{C}}(X)$ which takes a real bundle and tensors each fiber with \mathbb{C} to produce a complex bundle. This map induces a map on K-theory which fits into a long exact sequence (I am not asking you to prove this part) of the form

$$
\cdots \xrightarrow{c} \widetilde{K U}^{n-1}(X) \longrightarrow \widetilde{K O}^{n+1}(X) \longrightarrow \widetilde{K O}^{n}(X) \xrightarrow{c} \widetilde{K U}^{n}(X) \longrightarrow \cdots
$$

Use Bott periodicity to analyze this long exact sequence in the case $X=S^{0}$.

