Math 751
 Equivariant Homotopy and Cohomology Homework 1

Fall 2020

1. Recall from the Dihedral Representations video that the irreducible representations of $\Sigma_{3}=D_{3}$ are $\mathbf{1}, \sigma=\mathbf{1}_{\text {sgn }}$, and v_{1}. Determine the isomorphism types of $\sigma \otimes v_{1}$ and $v_{1} \otimes v_{1}$, and use this to write down the representation ring $R O\left(\Sigma_{3}\right)$ in terms of generators and relations.
2. The quaternion group Q_{8} of order 8 has generators $-1, i, j$, and k, subject to the relations

$$
(-1)^{2}=1 \quad \text { and } \quad i^{2}=j^{2}=k^{2}=i j k=-1
$$

We are writing 1 for the identity element here. The elements i, j, and k generate cyclic subgroups of order 4.
(a) Show that $Q_{8} /\langle-1\rangle \cong K_{4}$, and use this to determine four irreducible one-dimensional representations of Q_{8}.
(b) Recall that there is a four-dimensional (noncommutative) division algebra \mathbb{H} over \mathbb{R}, also know as the quaternions. It has a basis consisting of $\{1, i, j, k\}$ satisfying the same multiplicative rules as the group Q_{8}, and Q_{8} sits inside \mathbb{H} as a multiplicatively closed subset. Left multiplication by the elements of Q_{8} on \mathbb{H} therefore defines a four-dimensional real representation of Q_{8}. Show that it is irreducible.

The sum of the dimensions of these five irreducible representations is 8 , and so it follows that the regular representation $\mathbb{R}\left[Q_{8}\right]$ splits as a sum of these five irreducibles.
(c) (Optional) Determine the multiplicative structure of $R O\left(Q_{8}\right)$.

