Math 751
 Equivariant Homotopy and Cohomology Homework 2

 Fall 2020

 Fall 2020}
[You are not required to LaTex your homework (though it is preferred) . But if you would like to and are unsure how to produce Mackey functor diagrams, please consult the file MackeyDiagramsDemo.tex in Canvas.]

1. Describe explicitly the linearization map $A\left(K_{4}\right) \longrightarrow R O\left(K_{4}\right)$. (In contrast to the case of $G=C_{2}$, this is not an isomorpihsm).
2. Recall that if M and N are R-modules, then $\operatorname{Ext}_{R}(M, N)$ can be computed by finding a projective resolution P_{*} of M and then taking cohomology of the complex $\operatorname{Hom}_{R}\left(P_{*}, N\right)$. The same is true, more generally, in any abelian category.
Use the projective resolution of $\underline{\mathbb{Z}} \in \operatorname{Mack}\left(C_{2}\right)$ described in the video in order to compute the groups $\operatorname{Ext}_{\operatorname{Mack}\left(C_{2}\right)}^{*}(\underline{\mathbb{Z}}, \underline{\mathbb{Z}})$
3. This problem will concern the group $C_{6} \cong C_{2} \times C_{3}$.
(a) Work out the restriction and transfer maps in the projective Mackey functors $\underline{A}_{C_{6}}$ and $\uparrow_{e}^{C_{6}} \mathbb{Z}$. (You may find the Double Coset Formula for abelian groups, as in Corollary 1.49, useful here.)
(b) Find a surjection $\underline{A}_{C_{6}} \longrightarrow \underline{\mathbb{Z}}$ and determine the kernel.
(c) (Optional) Determine the induced Mackey functors $\uparrow_{C_{3}}^{C_{6}} \underline{\mathbb{Z}}$ and $\uparrow_{C_{2}}^{C_{6}} \underline{\mathbb{Z}}$ and find a surjection from the direct sum of these two induced Mackey functors to the kernel you found in part (b).
