Steenrod Algebra Suminar: Construction of Steenrod Operations

Bertrand Guillou

June 2, 2011

We will be discussing cohomology operations for cohomology with coefficients in \mathbb{F}_{p}, for p a prime. A cohomology operation of degree i is a natural transformation

$$
\mathrm{H}^{n}\left(X ; \mathbb{F}_{p}\right) \longrightarrow \mathrm{H}^{n+i}\left(X ; \mathbb{F}_{p}\right)
$$

An obvious example is the identity transformation, of degree 0 . Another important example is the p th power map $x \mapsto x^{p}$. Note that this is an additive operation since $(x+y)^{p} \equiv x^{p}+y^{p}$ $(\bmod p)$. Yet another example is the Bockstein homomorphism

$$
\beta: \mathrm{H}^{n}\left(X ; \mathbb{F}_{p}\right) \longrightarrow \mathrm{H}^{n+1}\left(X ; \mathbb{F}_{p}\right) .
$$

This is just the connecting homomorphism in the long exact sequence in cohomology arising from the short exact sequence in coefficients

$$
0 \longrightarrow \mathbb{Z} / p \longrightarrow \mathbb{Z} / p^{2} \longrightarrow \mathbb{Z} / p \longrightarrow 0
$$

1. Basic properties

We will focus on the so-called Steenrod operations. They look a little different depending on whether p is odd or 2 , so we list the properties in the two cases separately.

Theorem. Let p be odd. There are cohomology operations

$$
P^{i}: \mathrm{H}^{n}\left(X ; \mathbb{F}_{p}\right) \longrightarrow \mathrm{H}^{n+2 i(p-1)}\left(X ; \mathbb{F}_{p}\right)
$$

of degree $2 i(p-1)$ satisfying the following properties.

1. P^{0} is the identity
2. If $n=2 i$, then $P^{i}(x)=x^{p}$
3. (Instability) If $n<2 i+\varepsilon$, then $\beta^{\varepsilon} P^{i}(x)=0$ for $\varepsilon \in\{0,1\}$.
4. (Stability) $P^{i}(\Sigma x)=\Sigma P^{i}(x)$
5. (Cartan formula) $P^{k}(x y)=\sum_{i+j=k} P^{i}(x) P^{j}(y)$ and $\beta(x y)=\beta(x) y+(-1)^{|x|} x \beta(y)$
6. (Adem relations)If $\ell<p k$ then

$$
P^{\ell} P^{k}=\sum_{i=0}^{\lfloor\ell / p\rfloor}(-1)^{\ell+i}\binom{(p-1)(k-i)-1}{\ell-p i} P^{\ell+k-i} P^{i}
$$

and if $\ell<p k+1$ then

$$
\begin{aligned}
P^{\ell} \beta P^{k}= & \sum_{i=0}^{\lfloor\ell / p\rfloor}(-1)^{\ell+i}\binom{(p-1)(k-i)}{\ell-p i} \beta P^{\ell+k-i} P^{i} \\
& +\sum_{i=0}^{\lfloor\ell-1) / p\rfloor}(-1)^{\ell+i-1}\binom{(p-1)(k-i)-1}{\ell-p i-1} P^{\ell+k-i} \beta P^{i},
\end{aligned}
$$

For the prime $p=2$, we have operations

$$
\mathrm{Sq}^{i}: \mathrm{H}^{n}\left(X ; \mathbb{F}_{2}\right) \longrightarrow \mathrm{H}^{n+i}\left(X ; \mathbb{F}_{2}\right)
$$

satisfying analogous conditions, with the following changes.

1. We add that $\mathrm{Sq}^{1}=\beta$
2. $\mathrm{Sq}^{n}(x)=x^{2}$ (for any n)
3. $\mathrm{Sq}^{i}(x)=0$ if $i>n$
4. The Cartan formula reads $\mathrm{Sq}^{k}(x y)=\sum_{i+j=k} \mathrm{Sq}^{i}(x) \mathrm{Sq}^{j}(y)$
5. The Adem relations are that, for $\ell<2 k$,

$$
\mathrm{Sq}^{\ell} \mathrm{Sq}^{k}=\sum_{i=0}^{\lfloor\ell / 2\rfloor}\binom{k-i-1}{\ell-2 i} \mathrm{Sq}^{\ell+k-i} \mathrm{Sq}^{i}
$$

2. Outline

The homotopical construction of Steenrod operations involves two main steps:
(i) Construct the external reduced power operations

$$
P: \mathrm{H}^{2 n}\left(X ; \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2 n p}\left(X \times B \Sigma_{p} ; \mathbb{F}_{p}\right) .
$$

(ii) Compute $\mathrm{H}^{*}\left(X \times B \Sigma_{p} ; \mathbb{F}_{p}\right)$ in terms of $\mathrm{H}^{*}\left(X ; \mathbb{F}_{p}\right)$.

We discuss step (ii) today, and we will handle (i), and show how (i) and (ii) give the operations, next time.

3. The cohomology of $B \Sigma_{p}$

Let G be a finite group, and suppose given a subgroup $H \leq G$. Then, using suitable models for $B H$ and $B G$, there is a covering map $B H \longrightarrow B G$ of degree $|H: G|$. In cohomology, any covering admits a "transfer map" $\tau: \mathrm{H}^{*}(B H) \longrightarrow \mathrm{H}^{*}(B G)$ such that the composition

$$
\mathrm{H}^{*}(B G) \longrightarrow \mathrm{H}^{*}(B H) \xrightarrow{\tau} \mathrm{H}^{*}(B G)
$$

is multiplication by the degree of the covering. In particular, if H is a p-Sylow subgroup of G and we are working with \mathbb{F}_{p} as our coefficients, the composition is an isomorphism, so that $\mathrm{H}^{*}(B G)$ maps injectively into $\mathrm{H}^{*}(B H)$. In fact, one can identify the image. Let $N_{G}(H)$ be the normalizer of H in G. This acts on H by conjugation and thus acts on the space $B H$ and also on the cohomology ring $\mathrm{H}^{*}(B H)$. The inner conjugation action of H on $B H$ is null-homotopic, so the quotient Weyl group $W_{G}(H):=N_{G}(H) / H$ acts on $\mathrm{H}^{*}(B H)$, and it turns out that

$$
\mathrm{H}^{*}(B G)=\mathrm{H}^{*}(B H)^{W_{G}(H)} .
$$

Specializing now to $G=\Sigma_{p}$, the Sylow p-subgroup is C_{p}. We know that

$$
\mathrm{H}^{*}\left(B C_{p} ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[u, v] /\left(u^{2}=0, \beta(u)=v\right), \quad|u|=1,|v|=2 .
$$

Recall that the units \mathbb{F}_{p}^{\times}is a cyclic group C_{p-1}. Let $j \in \mathbb{F}_{p}$ be a generator for \mathbb{F}_{p}^{\times}. Then multiplication by j in \mathbb{F}_{p} corresponds to an element $\lambda \in \Sigma_{p}$ of order $p-1$, and let $\sigma \in \Sigma_{p}$ correspond to addition by 1 in \mathbb{F}_{p}. Then σ generates a Sylow subgroup C_{p}, and it turns out that $N_{\Sigma_{p}}\left(C_{p}\right)=\langle\sigma, \lambda\rangle$. It follows that $W_{\Sigma_{p}}\left(C_{p}\right) \cong C_{p-1}$. The generator λC_{p} of $W_{\Sigma_{p}}\left(C_{p}\right)$ acts on \mathbb{F}_{p} as the element λ, and it follows that the induced action on the class u is multiplication by j. Since $v=\beta(u)$, the same is true for v. More generally, the action on a class $u^{\varepsilon} v^{i}$ is by $j^{\varepsilon+i}$. So a class in $\mathrm{H}^{*}\left(B C_{p}\right)$ will be fixed by $W_{\Sigma_{p}}\left(C_{p}\right)$ if and only if it is a scalar multiple of either $v^{(p-1) m}$ or $u v^{(p-1) m-1}$ for some m. It follows that

$$
\mathrm{H}^{*}\left(B \Sigma_{p} ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[w, z] /\left(w^{2}=0, \beta(w)=z\right), \quad|w|=2(p-1)-1,|z|=2(p-1) .
$$

