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Last time, we began the discussion of the construction of Steenrod operations. Our first
main focus today will be the construction of the “External reduced power operation”

P : H2n(X; Fp)→ H2np(X ×BΣp; Fp).

1. Review of homotopy orbits

In order to define the external reduced power map, we will need to discuss the homotopy
orbit construction.

Let G be a finite group. Recall that we write BG for a space K(G, 1). We write EG
for a universal cover of BG. Then EG is contractible, and G acts freely (through deck
transformations) on EG. More generally, if W is any G-space which is contractible and on
which G acts freely, one tends to write EG for W , and the orbit space W/G can be seen to
be a K(G, 1), so that we may write BG = W/G.

If Y is any G-space, we can think of G as acting ”diagonally” on EG × Y . That is,
g · (w, y) = (g · w, g · y). We write EG ×G Y for the quotient by the G-action. This is
sometimes called the Borel construction on Y or the homotopy orbit space (and written
YhG). This has the feature that if Y −→ Z is a G-equivariant map that is also a weak
equivalence, then the induced map YhG −→ ZhG is also a weak equivalence.

Note: If we regard EG as a space with H-action, then it is a contractible space with a
free H-action, so EG is a model for EH too. In particular, there is a natural quotient map
EG/H −→ EG/G that is a model for BG −→ BG. This is the model we had in mind in
the last talk.

1.1. The external reduced power map
Assume given a factorization in the following diagram (all coefficients are assumed to be
Fp)

H2n(X) Φ //__________

%%LLLLLLLLLL
H2pn(EΣp ×Σp X

p)

��
H2pn(Xp) ∼=

// H2pn(EΣp ×Xp)
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The diagonal arrow is the pth power map, and the vertical arrow is induced by the quotient
map. The diagonal map X

∆−→ Xp is Σp equivariant and so gives rise to a map

EΣp ×Σp X
∼= BΣp ×X −→ EΣp ×Σp X

p.

Composing the induced map in cohomology with the map Φ above produces the external
reduced power map

H2n(X) Φ−→ H2pn(EΣp ×Σp X
p) −→ H2pn(BΣp ×X).

It remains to define the map Φ. Note that the Yoneda lemma implies that it suffices to
do this in the case X = K(Fp, 2n), in which case we are looking for a particular map

EΣp ×Σp K(Fp, 2n)p −→ K(Fp, 2pn).

The existence of this map is a strengthening of the statement that the multiplication of
(even-dimensional) classes is homotopy commutative. It now suffices to find a free Σp-space
W that is contractible and a Σp-equivariant map

W ×K(Fp, 2n)p −→ K(Fp, 2pn)

where Σp acts trivially on the right.
Define a new space S (S stands for Segal) by

S =
∏
n

K(Fp, 2n).

It will be important for the following that we take a model F̃p(S2n) for K(Fp, 2n) that is
a topological abelian group (really topological Fp-vector space). Then S becomes a graded
topological Fp-vector space. We then define, for each j ≥ 0, a Σj-space M(j) ⊆ Map(Sj , S)
as the space of multilinear graded maps Sj −→ S. Finally, we define O(j) ⊆ M(j) to be
the component of the cup product.

Evidently this space splits up as a product of spaces O(j)[n1, . . . , nj ] parametrizing
multilinear maps

K(Fp, 2n1)× · · · ×K(Fp, 2nj)→ K
(
Fp, 2(n1 + · · ·+ nj)

)
inducing the cup product.

Claim: O(j) is contractible. It suffices to show that any O(j)[n1, . . . , nj ] is contractible,
though for simplicity of notation we will only consider O[n, . . . , n]. Indeed, multilinear maps

K(Fp, 2n)j → K(Fp, 2jn)

correspond to linear maps
K(Fp, 2n)⊗j → K(Fp, 2jn).

But note that
K(Fp, 2n)⊗j = F̃p(S2n)⊗j ∼= F̃p

(
(S2n)∧j

) ∼= F̃pS
2jn.
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Thus

Mapmultilin

(
K(Fp, 2n)j ,K(Fp, 2jn)

) ∼= MapTopV ect

(
K(Fp, 2n)⊗j ,K(Fp, 2jn)

)
∼= MapTopV ect

(
K(Fp, 2jn),K(Fp, 2jn)

)
∼= Map∗

(
S2jn,K(Fp, 2jn)

)
' Fp

Our space O[n, . . . , n] is clearly a component of this mapping space and is therefore con-
tractible.

Lemma (Kozlowsi). The group Σj acts freely on O(j).

Thus the space O(p) is a model for EΣp. Since O(p) is a subspace of Map∗(Sp, S), there
is a natural Σp-equivariant map

O(p)× Sp −→ S.

By construction, it restricts to give an equivariant map

O(p)×K(Fp, 2n)p −→ K(Fp, 2pn).

and we get the desired map.

2. Putting it all together

Combining the computation from last time with the Kunneth isomorphism gives the com-
putation

H∗(BΣp×X; Fp) ∼= H∗(X; Fp)p[w, z]/(w2 = 0, β(w) = z), |w| = 2(p−1)−1, |z| = 2(p−1).

Then if P denotes the external reduced power operation

H2n(X) P−→ H2pn(BΣp ×X),

we can express the class P (x) as a polynomial in the classes w and z. We define classes
P i(x) and Bi(x) as the coefficients:

P (x) = Pn(x) +Bn−1(x)w + Pn−1(x)z +Bn−2(x)wz + Pn−2(x)z2 + . . .

+B1(x)wzn−2 + P 1(x)zn−1 +B0(x)wzn−1 + P 0(x)zn.

Technically, the above only defines the reduced power on even dimensional classes. For
y ∈ H2n+1(X), we may suspend to get an even dimensional class Σy ∈ H2(n+1)(ΣX). Then
P i(Σy) is a well-defined class in H2(n+1)+2i(p−1)(ΣX), corresponding to a well-defined class
in H2n+1+2i(p−1)(X). We define P i(y) to be this class.

Note that from the above construction it is fairly easy to see that Pn(x) = xp if |x| = 2n,
but it is nontrivial to check that P 0(x) = x. If one first shows that βP = 0, it is then also
easy to see, using that β(w) = z, that the class Bi(x) is none other than βP i(x); in
particular, B0(x) = β(x). Moreover, by definition, there are no operations P i defined on x
if i > n.


