Problem 1. (i) Show that if $E \xrightarrow{p} B$ is a fibration and Z is any space, then $\text{Map}(Z, E) \rightarrow \text{Map}(Z, B)$ is also a fibration.

(ii) Show that if $A \xrightarrow{i} X$ is a cofibration and Z is any space, then $\text{Map}(X, Z) \rightarrow \text{Map}(A, Z)$ is a fibration.

(iii) Show that if $A \xrightarrow{i} X$ is a cofibration and $E \xrightarrow{p} B$ is a fibration, then the natural map

$$\text{Map}(X, E) \rightarrow \text{Map}(A, E) \times_{\text{Map}(A, B)} \text{Map}(X, B)$$

is a fibration.

Hint: The key is to show that one can find a lift in a diagram of the form

$$
\begin{array}{ccc}
M(j) & \xrightarrow{E} & \rightarrow X \\
\downarrow & \downarrow \downarrow & \downarrow \downarrow \\
X \times I & \xrightarrow{r} & \rightarrow M(j)
\end{array}
$$

This can be done by establishing that the inclusion $M(j) \hookrightarrow X \times I$ is a retract of the inclusion $i_0 : X \times I \hookrightarrow (X \times I) \times I$. One argument for the latter fact is as follows.

We have previously shown that if $j : A \rightarrow X$ is a cofibration, then the inclusion $M(j) \hookrightarrow X \times I$ admits a retraction $r : X \times I \rightarrow M(j)$. This can be improved: define a homotopy $h : X \times I \times I \rightarrow X \times I$ by

$$h(x, t, s) = (r_1(x, t(1-s)), st + (1-s)r_2(x, t))$$

(r_1 and r_2 are the two components of the map r). Then h defines a homotopy from r to the identity, $\text{rel } M(j)$. Thus $M(j)$ is a deformation retract of $X \times I$.

By Theorem 6.4 of [May], there is a continuous $u : X \rightarrow I$ such that $u^{-1}(0) = A$. Define $v : X \times I \rightarrow I$ by $v(x, t) = t \cdot u(x)$, and note that $v^{-1}(0) = M(j)$. Define now a new homotopy $\Phi : X \times I \times I \rightarrow X \times I$ by

$$\Phi(x, t, s) = \begin{cases}
h(x, t, s \cdot v(x, t)^{-1}) & s < v(x, t) \\
h(x, t, 1) = (x, t) & s \geq v(x, t)
\end{cases}$$

(you should convince yourself that Φ is continuous). Finally, define $\Lambda : X \times I \rightarrow X \times I \times I$ by $\Lambda(x, t) = (x, t, v(x, t))$. Check that the following diagram is a retract diagram

$$
\begin{array}{ccc}
M(j) & \xrightarrow{E} & X \times I \\
\downarrow & \downarrow r & \downarrow \downarrow \\
X \times I & \xrightarrow{\Lambda} & X \times I \times I
\end{array}
\xrightarrow{i_0} \begin{array}{ccc}
\downarrow & \downarrow \downarrow & \downarrow \downarrow \\
M(j) & \xrightarrow{\Phi} & X \times I
\end{array}
$$

Problem 2. (The Hopf invariant) Let $k \geq 2$ and let $f : S^{2k-1} \rightarrow S^k$ be a map. Then the cofiber $C(f)$ has a natural CW structure with cells in dimensions 0, k, and $2k$. As $k \geq 2$, the cellular chain complex has trivial differentials, and the cohomology of $C(f)$ is \mathbb{Z} in dimensions 0, k, and $2k$. Let x be the generator of $H^k(C(f))$ corresponding to the top cell of S^k, and let y be the
generator of $H^{2k}(C(f))$ corresponding to the cell attached via f. Then $x^2 = h(f)y$ for some integer $h(f)$, which is called the Hopf invariant of the map f.

(i) Show that if k is odd, then $h(f) = 0$.

(ii) Let $η : S^3 \to S^2$ be the Hopf map. Show that $h(η) = 1$.

(iii) Let $k = 2n$ and let $ι : S^{2n} \to S^{2n}$ be the identity map. Show that the Whitehead product $[ι, ι] \in π_{4n-1}(S^{2n})$ has Hopf invariant 2. (Hint: Use the diagram

$\begin{array}{ccc}
S^{2n} ∨ S^{2n} & \to & S^{2n} \times S^{2n} \\
↓ & & ↓ \\
S^{2n} & \to & C([ι, ι]) \to S^{4n}
\end{array}$

to compute $h([ι, ι])$.

By part (iii) and the fact that the Hopf invariant is a homomorphism (see Hatcher, 4B.1), for each n, the map $h : π_{4n-1}(S^{2n}) \to Z$ is either surjective or has image 2Z. In either case, we have a surjective homomorphism from $π_{4n-1}(S^{2n})$ onto an infinite cyclic group, and such a map always has a section. We conclude that $π_{4n-1}(S^{2n})$ always has a summand of Z. J. P. Serre proved that the complement is finite and that every other homotopy group of spheres is finite. Frank Adams proved that maps of Hopf invariant one exist only for $k = 2n = 2$, 4, or 8 (examples are the Hopf maps $η$, $ν$, and $σ$).

Problem 3. Let $η \in π_3(S^2)$ be the Hopf map and let $ι \in π_2(S^2)$ be correspond to the identity of S^2. Show that for any integers $a, b ∈ Z$ we have

$$(aι) \circ (bη) = a^2 bη.$$

This shows that the map $π_2(S^2) \to π_3(S^2)$ induced by precomposition with $η$ is not a homomorphism.

(Hint: Consider a commutative diagram

$\begin{array}{ccc}
S^2 & \to & C(bη) \to S^4 \\
\downarrow aι & & \downarrow id \\
S^2 & \to & C(bη ∘ aι) \to S^4
\end{array}$

and the Hopf invariants.)