Problem 1. (i) Let \(p : E \rightarrow X \) be the universal cover. Show that, for \(n \geq 2 \), the action of \(\pi_1 (X) \) on \(\pi_n (X) \cong \pi_n (E) \) corresponds to the action of deck transformations on \(E \).
(ii) Show that \(\pi_1 (\mathbb{R}{\mathbb{P}}^n) \) acts trivially on \(\pi_n (\mathbb{R}{\mathbb{P}}^n) \) if and only if \(n \) is odd.

Problem 2. Let \(F \xrightarrow{i} E \xrightarrow{p} B \) be a fiber sequence of connected spaces.
(i) Construct an action of \(\pi_1 (E) \) on the higher homotopy groups of the fiber \(F \). Hint: given \(\alpha \in \pi_n (F) \) and \(\gamma \in \pi_1 (E) \), consider \(p_* (\gamma \cdot i_* (\alpha)) \in \pi_n (B) \).
(ii) Find an example in which \(E \) is simple, but \(F \) is not. (You should be able to find an example in which \(\pi_1 (F) \) is not abelian.)

Problem 3. Let \(X \) be a based space, let \(n \geq 0 \), and let \(A \) be any abelian group. Show that there is a weak equivalence
\[
\text{Map}_* (X, K(A, n)) \simeq \prod_{0 \leq i \leq n} K(\tilde{H}^i (X; A), n - i).
\]

Problem 4. Determine the second Postnikov section \(P_2 (\Omega S^2) \). Show that each \(P_n (\Omega S^2) \) is equivalent to a product \(S^1 \times Y_n \), and describe the space \(Y_n \). Show, however, that \(\Omega S^2 \) is not a Generalized Eilenberg-Mac Lane space (GEM).