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1. Mon, Jan. 24

There is a functor ι : Top −→ Ho(Top) which acts as the identity functor on objects (spaces)
and sends any continuous map to its homotopy class

Proposition 1.1. The functor Top −→ Ho(Top) is universal among functors that take the homo-
topy equivalences to isomorphisms. That is, suppose F : Top −→ C is a functor such that for any
homotopy equivalence g in Top, the morphism F (g) in C is an isomorphism. Then there exists a
functor ϕF : Ho(Top) −→ C and a natural isomorphism η : ϕF ◦ ι ∼= F .
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Proof. We may define the functor ϕF on objects to agree with F , setting ϕF (X) := F (X). Let
α : X −→ Y be a morphism in Ho(Top) and let fα : X −→ Y be a continuous map in the
homotopy class α. Define ϕF (α) := F (fα). We must show that the morphism F (fα) does not
depend on the choice of representative fα for α.

Suppose that g ' fα. That is, we have a homotopy h : X × I −→ Y such that h ◦ i0 = fα
and h ◦ i1 = g. The maps i0 and i1 : X ↪→ X × I and the projection πX : X × I −→ X are
homotopy equivalences and so F takes these to isomorphisms in C . Furthermore, πX ◦ i0 = idX
and πX ◦ i1 = idX , so we have

F (πX) ◦ F (i0) = idF (X) = F (πX) ◦ F (i1).

Since F (πX) is an isomorphism, we conclude that F (i0) = F (i1). But then

F (g) = F (h) ◦ F (i1) = F (h) ◦ F (i0) = F (fα),

so ϕF is well-defined on morphisms. It remains to show that ϕF is a functor, but we leave this as
an exercise.

Finally, given our construction of the functor ϕF , the composition ϕF ◦ ι is already the functor
F on the nose, so that we may simply take the identity natural transformation for η. �

In general, if D is a category andW is a collection of morphisms in D , then the universal solution
to the above problem (a category E and a functor ι : D −→ E converting all morphisms in W
into isomorphisms) is called a localization of D with respect to W and is denoted D [W]−1. There
is not always a category D [W]−1 satisfying this universal property but the result above says that
Ho(Top) is a candidate for Top[hoequiv]−1.

Algebraic topology studies topological spaces up to homotopy equivalence, and many of the
techniques involve attaching algebraic invariants to spaces which only depend on the homotopy
type of a space. Another way to say this is that one uses functors from Top to algebraic categories
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(abelian groups, for instance), which factor through the homotopy category. Such functors are
called homotopy-invariant functors.

Of course, there is also a basepointed version of the above story. The based homotopy category
Ho(Top∗) has objects the based spaces and morphism sets the based homotopy classes of based
maps.

An example of a homotopy-invariant algebraic construction on (based) spaces is the fundamental
group. This is defined as π1(X,x) = [S1, (X,x)]∗. One might just as well replace the circle S1 by
a sphere Sn of arbitrary dimension. So for any n ≥ 0, we define

πn(X,x) := [Sn, (X,x)].

Since π1(X,x) is not just a set but also a group, we might ask whether the same is true of
πn(X,x) for arbitrary n. Let us first recall how the group structure is defined on π1(X).

We define the “pinch map” p : S1 −→ S1 ∨ S1 by the formula

p(eiθ) =
{
ι1(e2iθ) 0 ≤ θ ≤ π
ι2(e2iθ) π ≤ θ ≤ 2π,

where i1 and i2 denote the two inclusions S1 ↪→ S1 ∨ S1. That is, p is the loop that first goes
around one loop of the figure eight and then goes around the other loop. If we chose to instead
work with the model S1 = I/∂I, the pinch map would be given by the formula

p(x) =
{
ι1(2x) 0 ≤ x ≤ 1

2
ι2(2x− 1) 1

2 ≤ x ≤ 1.

We can use p to define the multiplication on π1(X,x):

π1(X,x)× π1(X,x) = [S1, X]∗ × [S1, X]∗ ∼= [S1 ∨ S1, X]∗
−◦p−−→ [S1, X]∗ = π1(X,x).

The unit element for the group structure is the constant based map S1 −→ X.
We now replace S1 by Sn. For any n ≥ 0, we can always consider the constant based map

Sn −→ X, so we have the “unit element” in πn(X,x) for any n. Note that when n = 0, then a
based map S0 −→ X is specified by the image of the non-basepoint of S0, so such a map corresponds
exactly to a point of X. Two such maps are homotopic if and only if the specified points lie in the
same path component of X, so we conclude that π0(X,x) is the set of path components of X. The
“unit element” in this case is just the component of the basepoint. But we do not expect to have
any additional multiplication on the set of path components, so π0(X) is just a pointed set.

For n ≥ 1, the group multiplication would come from a pinch map Sn −→ Sn ∨ Sn. Recall that
if n ≥ 1, then Sn ∼= (S1)∧n. The identity

(X ∨ Y ) ∧ Z ∼= (X ∧ Z) ∨ (Y ∧ Z),

then allows us to define a pinch map for n ≥ 1 by

Sn ∼= S1 ∧ (S1)∧n−1 p∧1−−→ (S1 ∨ S1) ∧ (S1)∧n−1 ∼= Sn ∨ Sn.
One can show that this defines a group structure on πn(X,x) for n ≥ 1.

If n > 1, then the choice of applying the pinch map to the first factor of S1 in Sn is arbitrary,
and we see that we could in fact define n different pinch maps Sn −→ Sn∨Sn by choosing different
smash factors.

Proposition 1.2. (Eckmann-Hilton argument) Let A be a set with a distinguished point 0 ∈ A.
Suppose given two operations

? : A×A −→ A � : A×A −→ A

such that 0 acts as a unit element for both operations and such that

(a ? b)�(c ? d) = (a�c) ? (b�d)
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for all a, b, c, d ∈ A. Then
a ? b = a�b = b ? a

for all a, b ∈ A.

Proof. The 4-tuple a, 0, 0, b gives

a�b = (a ? 0)�(0 ? b) = (a�0) ? (0�b) = a ? b.

Similarly, the 4-tuple 0, a, b, 0 gives

a�b = (0 ? a)�(b ? 0) = (0�b) ? (a�0) = b ? a.

�

Proposition 1.3. Let n > 1. Let p1 and p2 be pinch maps Sn −→ Sn ∨ Sn arising from pinching
different smash factors of Sn. The resulting maps p∗1 and p∗2 : πn(X,x) × πn(X,x) −→ πn(X,x)
satisfy the assumptions of the Eckmann-Hilton argument up to homotopy.

Proof. We give the proof for n = 2. Viewing S2 as I2/∂I2, we may view one pinch map as a
horizontal pinch and the other as a vertical pinch. The Eckmann-Hilton property amounts to the
condition that the diagram

S2
p1 //

p2

��

S2 ∨ S2

p2∨p2
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S2 ∨ S2

p1∨p1 ((QQQQQQQQQQQQQ S2 ∨ S2 ∨ S2 ∨ S2

S2 ∨ S2 ∨ S2 ∨ S2

id∨τ∨id

55jjjjjjjjjjjjjjj

commutes up to homotopy. Using the model S2 = I2/∂I2, the composition (p2∨p2)◦p1 is the map

(x, y) 7→


ι1(2x, 2y) x, y ≤ 1

2
ι2(2x, 2y − 1) x ≤ 1

2 ≤ y
ι3(2x− 1, 2y) y ≤ 1

2 ≤ x
ι4(2x− 1, 2y − 1) 1

2 ≤ x, y,
and the composition (p1 ∨ p1) ◦ p2 is the map

(x, y) 7→


ι1(2x, 2y) x, y ≤ 1

2
ι2(2x− 1, 2y) y ≤ 1

2 ≤ x
ι3(2x, 2y − 1) x ≤ 1

2 ≤ y
ι4(2x− 1, 2y − 1) 1

2 ≤ x, y,
Composing the latter with the permutation id ∨ τ ∨ id gives precisely the former, on the nose. �

Corollary 1.4. The homotopy groups πn(X,x) are abelian for n ≥ 2.

2. Wed, Jan. 26

Example 2.1. One of the first computations of fundamental groups that one learns is that π1(S1) ∼=
Z. This generalizes, as we shall see, to the result

πn(Sn) ∼= Z
for n ≥ 1. When n = 0, π0(S0) is the set of path components of S0, namely the two point set S0

itself.

One method of computing fundamental groups is the use of covering spaces, but it turns out
that this is not as helpful for computing higher homotopy groups because of the following result.
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Proposition 2.2. Let p : E −→ B be a covering map. Then for any e ∈ E, the map p induces an
isomorphism πn(E, e) ∼= πn(B, p(e)) for any n ≥ 2.

Proof. For injectivity, we will assume the “homotopy lifting property” for covering spaces ([Hatcher,
1.30]). That is, we suppose that given a space Y , a map f : Y −→ E and a homotopy h : Y ×I −→ B

with h0 = p ◦ f , then there is a unique lift h̃ : Y × I −→ E with h̃0 = f and p ◦ h̃ = h.

Y

i0
��

f // E

p

��
Y × I

h
//

∃! h̃
;;w

w
w

w
w

B.

Taking Y = Sn, let α : Sn −→ E be a pointed map. Suppose that p∗(α) = 0 ∈ πn(B, b). Then we
have a homotopy h : p ◦ α ' ∗. By the homotopy lifting property, we have a homotopy h̃ : α ' β,
where β : Sn −→ E is a map whose image lies in p−1(b). Since p−1(b) is discrete and Sn is connected
(n > 0), β must be a constant map. But we have not yet verified that β(∗) = e. Consider the
restriction of the homotopy h to {∗} × I ⊂ Sn × I. This restriction is constant at the basepoint
b ∈ B, so a choice of lift of this (starting at e) would be the constant path at e. Since the lift is
unique, we conclude that the restriction of h̃ to {∗} × Sn is constant at e, and it follows that our
homotopy h̃ is based and that β is based as well.

For surjectivity, we use the following lifting property for covering spaces: ([May, §3.7] or [Hatcher,
Prop 1.33]) a based map f : X −→ B lifts to a based map f̃ : X −→ E if and only if f∗(π1(X,x)) ⊂
p∗(π1(E, e)). In particular, taking X = Sn with n ≥ 2, then such a lift always exists since Sn is
simply connected. �

Example 2.3. Since the exponential map R −→ S1 is a covering (the universal cover), we find
that πn(S1) ∼= πn(R) = 0 for n ≥ 2, so all higher homotopy groups of S1 vanish.

We shall see later that in addition πk(Sn) always vanishes for k < n. However, the same is not
true for k > n. For instance, we shall find that π3(S2) ∼= Z. All other higher homotopy groups
of S2 are finite abelian, but there are infinitely many nonzero ones, and they have not all been
computed.

2.1. Dependence on the basepoint. How does all of the above depend on basepoints? For
instance, we might consider the unbased homotopy classes [Sn, X]. There is a “forgetful” map

[Sn, (X,x)]∗ −→ [Sn, X].

When is this surjective? We would want to know if a map β : Sn −→ X is homotopic to a based
map. Any such homotopy would provide a path from β(∗) to the basepoint of X, so at the very
least, we would want X to be path connected. In fact, this is sufficient as well.

Let β : Sn −→ X and write b = β(∗). Suppose that γ is a path in X from b to x. We define a
homotopy H : Sn × I −→ X such that at time t, Ht : Sn −→ X satisfies Ht(∗) = γ(t). (Pictures
from page 341 of Hatcher)

We may apply the above construction even if β is based. When n = 1, the resulting map

π1(X,x)× π1(X,x) −→ π1(X,x)

is the conjugation action on π1(X,x) on itself:

(γ, β) 7→ γ · β · γ−1.

For n > 1, we also get an action

π1(X,x)× πn(X,x) −→ πn(X,x)

of the fundamental group on the higher homotopy groups.
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Example 2.4. Let X = S1 ∨ S2. The universal cover of X is the space Y given by the real line R
with a copy of S2 attached to each integer point. Assuming the result π2(S2) ∼= Z, one can further
show that each distinct copy of S2 in Y contributes a summand of Z to π2(Y ). Furthermore, the
action of π1(X) ∼= Z on π2(X) ∼= π2(Y ) can be identified with the deck transformations acting on
Y .

3. Fri, Jan. 28

Another application of the above ideas is as follows. Let X be a path-connected space, and let
x and y be two choices of basepoints in X. Let γ be a path in X from x to y. Then the above
procedure specifies a map (action by the path γ)

πn(X,x)
γ·−→ πn(X, y).

This is a homomorphism, and action by the inverse path γ−1 specifies an inverse homomorphism

πn(X, y)
γ−1·−−−→ πn(X,x).

That is, the homotopy groups of a based space do not depend, up to isomorphism, on the basepoint.
So we will often be sloppy and drop the basepoint from the notation.

Definition 3.1. A map f : X −→ Y is called a weak homotopy equivalence if for every choice
of basepoint x ∈ X, the induced map of homotopy groups

f∗ : πn(X,x) −→ πn(Y, f(x))

is an isomorphism for every n.

Proposition 3.2. A homotopy equivalence f : X −→ Y is a weak homotopy equivalence.

Proof. For convenience, we will assume that X and Y are path-connected, so that we don’t have to
worry about π0. Let g be a homotopy inverse for f and suppose given a basepoint x ∈ X. Consider
the composition

πn(X,x)
f−→ πn(Y, f(x))

g−→ πn(X, gf(x))
We know that g ◦ f ' idX , but this is not a based homotopy (g ◦ f is not even a based map). Let
γ be the path h(x, t) from gf(x) to x. Then we have

πn(X,x)
f−→ πn(Y, f(x))

g−→ πn(X, gf(x))
γ·−→ πn(X,x)

and we claim that this composition is the identity. The point is that we can find a based homotopy
γ · g ◦ f ' idX (draw a picture).

Since we have shown that g∗ ◦ f∗ : πn(X,x) −→ πn(X, gf(x)) is an isomorphism, it follows that
f∗ is injective. A similar argument, using the homotopy f ◦g ' idY , shows that f∗ is surjective. �

The converse is not true, as you will see on the homework.

Proposition 3.3. The weak homotopy equivalences satisfy the 2-out-of-3 property.

Proof. Suppose given maps X
f−→ Y

g−→ Z and let h = g ◦ f . The only part of the requirement
needing any work is the statement that if f and h are weak homotopy equivalences, then so is
g. Let y ∈ Y be a chosen basepoint. If we knew that y were in the image of f , we would be
home free, but of course this need not be the case. However, we know that f induces a bijection
π0(X) ∼= π0(Y ). So we know there is a point y2 in the path component of our chosen y such that
y2 is in the image of f . Let α be a path from y to y2. Then the conjugation action from above
specifies an isomorphism

α · (−) : πn(Y, y) ∼= πn(Y, y2)
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and similarly
g(α) · (−) : πn(Z, g(y)) ∼= πn(Z, g(y2)).

The following diagram commutes, by construction, which finishes the proof

πn(Y, y)
g //

α· ∼=
��

πn(Z, g(y))

g(α)·∼=
��

πn(Y, y2) g

∼= // πn(Z, g(y2)).

�

Recall that the classical homotopy category of spaces was formed by taking homotopy classes of
maps of spaces. We saw that this was equivalent to formally inverting the homotopy equivalences.
The homotopy category of spaces is defined by formally inverting the weak homotopy equiva-
lences. But we don’t know yet that such a category exists! We will see later another construction
of this category.

We will largely restrict our attention to spaces which are built up in a particularly nice way.

Definition 3.4. A CW structure on a space X is an increasing filtration X0 ⊆ X1 ⊆ X2 ⊆ . . . X
such that

(1) X0 is a discrete set
(2) For each n ≥ 0, there is a collection Cn+1 of maps α : Sn −→ Xn (called the “attaching

maps for the n+ 1-cells of X”) and a pushout diagram∐
α∈Cn+1

Sn //

��

∐
α∈Cn+1

Dn+1

��
Xn

// Xn+1

(3) The topology on X is the “weak topology” of the union X =
⋃
nXn. That is A ⊆ X is

closed if and only if A ∩Xn ⊆ Xn is closed for all n.
We say that X is a CW complex if it admits a CW structure.

The space Xn is called the n-skeleton of the CW complex X. Each map Dn en−→ Xn is called an
n-cell.

A finite CW complex is one with finitely many cells. A CW complex is of finite type if it has
finitely many cells in each dimension. A CW complex is finite-dimensional if X = Xn for some
n.

Example 3.5. (1) Sn has a CW structure in which the 0-skeleton is the basepoint. A single n-cell
is then attached via a trivial map Sn−1 −→ ∗. That the resulting space is Sn is equivalent to the
homeomorphism Dn/Sn−1 ∼= Sn.

(2) There is an alternative CW structure on Sn. One starts with S0 for the 0-skeleton. We then
attach two 1-cells via two copies of the identity map S0 = S0 as attaching map. The 1-skeleton is
a model for S1. Inductively, we attach two cells at each stage so that the k-skeleton is Sk. This
CW structure on Sn has 2n+ 2 cells.

(3) Any CW structure on Sn yields one on Dn+1. We attach a single cell to Sn to obtain Dn+1.
This realizes Dn+1 as a subcomplex of the second CW structure on Sn+1 (if we also use this CW
structure on Sn).

(4) Let RPn be the quotient of Sn by the relation x ∼ (−x). Using the larger CW structure
on Sn from above, this equivalence relation identifies the two k-cells, for each 0 ≤ k ≤ n. There
results a CW structure on RPn having n+ 1-cells, one in each dimension up n.
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(5) Complex projective space CPn is similarly a quotient of S2n+1, thought of as the unit sphere
in Cn+1, by an action of S1, thought of as the complex numbers of unit norm (the group SU(1)).
We start with a single point for the 0-skeleton. Suppose inductively that we have defined the
2k-skeleton (which is a model for CPk). Then we do not attach any 2k + 1-cells, so that the
2k+ 1-skeleton is the same as the 2k-skeleton. We attach a single 2k+ 2-cell via the attaching map
S2k+1 −→ CPk which is the defining quotient map for CPn. The resulting CW structure on CPn
has (n+ 1)-cells, all in even dimensions.
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