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1. Mon, FEB. 7

Proposition 1.1. Let i : A — X be a based map between non-degenerately based spaces. If i is a
based cofibration, then it is also an unbased cofibration.

Proof. Let
A *h> YI

X—Y
be a test diagram (f and g are not based maps). The space Y does not have a preassigned basepoint,
so we choose yp = f(xg) as the basepoint. Then f, but not h, is a based map. Since A is non-
degenerately based, the homotopy h is homotopic to a based map. This requires us to know that
h(ap) is in the path-component (in Y') of the basepoint. But h(ag) is a path in Y beginning at yo,
so there is an obvious homotopy to the constant path at yg. Use of this produces a homotopy of
homotopies H : A x [ x [ — Y satisfying

H(ap,0,s) =yo = H(ap,t,1).

The first of these equalities comes from our choice of contracting homotopy of h(ag), and the second
is the statement that H(a,t, 1) is a based homotopy.

Let us write ha(a,s) := H(a,0,s). As we said above, this is a based homotopy. Then we get a
lift in the diagram

A & YI
v s
7/
x Loy
Let H : A x I — Y! be defined by H(a,t)(s) = (a,s,t) (note the change of order of the

variables). We are now thinking of A x I as based at (ap, 1), and H is now based. We therefore
get a lift in the diagram

AXIL)Y]

7
G
ixidl i l
~F

X xI——=Y.
The restriction of G to X x {0} is then a lift of h. |

Proposition 1.2. Let f : (X, xz9) — (Y, yo) be a based map between non-degenerately based spaces.
If f is a homotopy equivalence, then it is a based homotopy equivalence.

1



Proof. Let g : Y — X be a homotopy inverse. Since g o f ~ id, it follows that g(yp) is in the
path-component of xg, so that by the previous result we can replace g up to homotopy by a based
map. Let h: go f ~id be a homotopy. This homotopy may not be based.

Let « be the path h(zg,t) in X. Since X is well-pointed, we have a lift in the diagram

o) 7 X!
l Y /1 ievo
s/
Ve
Let e = b} : X — X. We claim that e o g o f is based homotopic to the identity. Define maps
J:XxI—X K:I—X!
by the formulas

B h/( ° f(x), 1— 25) s < i

J(x78) - { gh(x’2s — 1) S 2 gy
B (1-2s(1—t)) s<3i
K(st) = { 7(17— 21-s)(1-1) s> 1.

J specifies a homotopy eo go f ~ go f on the first half of the interval and a homotopy g o f ~id
on the second half (this is not a based homotopy). The map K is given, for fixed ¢, by traveling
along ~ |[t71] backwards and then forwards. The important thing is that K takes value xg if either
s =0,1o0rt=1. The HEP now gives a lift

I xI

7
L
i P - \LEUO
~

XXIT>X.

The restriction of L to the intervals (0,t), (s,1), and (1,1 — ¢) now specifies a based homotopy
eogo f. So, writing ¢’ = e o g, we have that ¢’ o f is based homotopic to the identity of X. We
know that fog’ ~ idy, but we do not know that there is a based homotopy. But we can repeat the
above argument to replace f by a homotopic based map f’ so that f’ o ¢’ ~, idy. It is now formal
that the left and right homotopy inverses for ¢’ must coincide up to based homotopy, so that we
have a based homotopy equivalence. [

K

We are headed towards a proof of the Whitehead theorem, but first we will need to discuss
relative homotopy groups. Suppose given a based map i : A — X (usually an inclusion). In
order to define relative homotopy groups, it is convenient to use the models I™ and 1™ for D™ and
S"~1. Recall that we also have the subspace J" C 9" given by J" = 9I""! x TU 1"~ x {1} with
oI/ J" = S"~L. For any n > 1, we define

(X, A, ag) = [(I",0I" 1, J™), (X, A, ag))].

That is, the relative homotopy group m,(X, A, ap) is the set of homotopy classes of diagrams

Jr—— Qo

L,

o ——A

L,

" —-X,
where the homotopies are through maps of the same form. Note that when A is simply the basepoint
of X, then we get 7, (X, z,x) = m, (X, x).
2



There is another useful description of relative homotopy groups. Given a based map i: A — X
as above, define a space F(i) C X! x A (the homotopy fiber of i) by

F(i) ={(v,a) | 7(1) = 20,7(0) = i(a).
The pair (cg,,ag) consisting of the constant path at xo and the lift ag serve as a natural basepoint

for F(7).
Proposition 1.3. For any n > 1, we have
(X, A, ag) = mp—1(Fi).

Proof. A map f : I — X corresponds to a map I"~! — X'. The restriction of g to I"~! x
{0} — A gives the second component of a map ¢ : "1 — F'. Since the restriction of g to J" is
constant at the basepoint, it follows that ¢ sends all of 91" ! to the basepoint of F. |

Corollary 1.4. The set m,(X, A, ag) is a group for n > 2 and an abelian group for n > 3.

Note that the relative homotopy groups are functorial with respect to maps of triples. In par-
ticular, the map of triples (X, zg, z9) — (X, A4, ap) induces a map

Js (X, ) — (X, A, ap).
We also have a “boundary map”
0:mp(X, A a0) — mh—1(4, ap)

which assigns to a map (f,g) of triples the restriction of g to I"™! x {0}. The further restric-
tion of this to I~ x {0} C J" is constant at the basepoint, so we get an induced based map
m=tjor—t — A

2. WED, FEB. 9

Theorem 2.1. The sequence
(A, ag) (X, 20) 25 T (X, Ay ag) S w1 (A) — .. D m(A) — mo(X)
is a long exact sequence.

Proof. We begin by establishing that
m(A) & 1 (X) 25 (X, A) D mo(A) 25 m(X)
is exact.

Exactness at mp(A4): Let o' € A and suppose that i.(a’) = [xo] in mo(X). Then we have a
path v in X starting at i(a’) and ending at xy. But then the pair (v, a’) specifies a point of F,
and o/ = 9(v,d’). Conversely, if (y,a’) is a point in F, then the path 7 in X establishes that
i0(,d’) = i.[d] = [xo] in X.

Exactness at m1(X, A): Let (v,a’) be a point of F' (so 7 is a path in X starting at i(a’) and
ending at zg) such that [a'] = [ag] in m9(A). Let a be a path in A starting at ¢’ and ending at
ag. Then v~ 1i(a) specifies a loop in X based at zg. Moreover, the corresponding map of triples
(I1,0I,{1}) — (X, A, ap) is homotopic to (v,a’) via the homotopy that simply contracts i(a) to
the constant path at i(a’).

Exactness at m(X): Let §: I — X be a loop based at x(, and suppose j.((3) is trivial in
m1(X, A). This means that we have a homotopy h : [ ~ ¢z, to the constant path such that
h(1,t) = z¢ for all ¢ and such that h(0,¢) is the image of a loop a in A. Now the homotopy h
specifies a based homotopy  ~ i(a). In other words, [5] = i.[a].

Now we will reinterpret the rest of the terms in the sequence as shifted copies of the terms just
discussed. Let d; : F'(i) — A be the projection map.
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Lemma 2.2. The map 0 : m(X,A) — mo(A) corresponds to (d;). under the isomorphism
(X, A) = mo(F (7).

Let QX denote the based loop space Map, (S!, X) of X. Then
71 (X) = [SY, X]. 2 [S%, QX]. = 71o(2X).
We have a map QX — F(i) which sends a loop v to the pair (v, ag).
Lemma 2.3. The above map makes the diagram

m(X) —L> m (X, A)

~l l~

mo(QX) —— mo(F1)
commute.

Lemma 2.4. There is a homeomorphism making the following diagram commute:

F(Q4) — QF (i)
NA.

Proof. We define the required map by sending the pair (h, ) to the map
t +— (evy o h,7(t)).

It is not difficult to see this is a homeomorphism and that the images of these elements under the
maps to QA are both ~. |

As a result of the above lemmas, we get exactness of the long sequence at three more spots to
the left. The above tells us that the maps
ma(A) 2 mo(X) 25 m(X, A) L i (A) 2 m(X)
may be reinterpreted as the maps in
(QA) = (X)) L5 (X, 04) 2 10(QA4) 2 mo(QX),

so we are done. [ |

3. Fri, FEB. 11

Definition 3.1. We say that a map f : X — Y is an n-equivalence if for every choice of
basepoint x € X, the map m;(X,z) — m;(Y, f(x)) is an isomorphism for ¢ < n and a surjection
for ¢ = n.

Proposition 3.2. A map f: X — Y is an n-equivalence if and only the relative homotopy groups
mi (Y, X) vanish for i <n and mo(X) — mo(Y') is surjective

Because of this, an n-equivalence is also sometimes called an n-connected map.
One of the key tools in working with CW complexes is the Homotopy Extension and Lifting
Property (HELP).

Theorem 3.3. (HELP, May 10.3) Let (X, A) be a relative CW complex of dimension < n and let
e:Y — Z be an n-equivalence. Then, given maps f : X — Z,g: A— Y, and h: AxI — Z
such that fla = hoig and eog = hoi; in the following diagram, there are maps g and h that make
the entire diagram commute:
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i0 i1

A Ax]T A
S
J Z‘ = Y J
f S AN
/ hl AN
X x I X

10 1

Proof. The proof is by induction on the cells. It thus suffices to consider the case of attaching a
single cell e? of dimension d < n to A. Since then X = A Ugd—1 e, by the universal properties of
pushouts, it is enough to consider the case S9! < D9 We treat this case separately below. M

Proposition 3.4. The HELP holds for the inclusion S < D® for any d < n.

Proof. We have already seen that the inclusion S%~! < D9 satisfies the HEP. That is, the ‘homotopy
h defined on S extends to one h defined on D?. This is not yet the desired homotopy h, as there
is no reason for the endpoint of the homotopy, h(—, 1), to lift to a map to Y.

We will use the following lemma:

Lemma 3.5 (Compression). If a map of triples (I¢,0I%,J%) £ 19 (Z,Y,yo) represents zero in

7q(Z,Y,y0), then the map I* — Z is homotopic, rel 0I?, to a map that lifts to Y.

Proof. Suppose H is a homotopy from the map (f,g) of triples to the constant map. Thus H
corresponds to a map Hy : I9 x I — Z and a lift Hy : 019 x I — Y of Hy |gjay;. The restriction
of Hy to J¢ x I is constant at the basepoint zy and similarly with the restriction to I¢ x {1}. So
both of these restrictions lift to a constant map to Y. The restriction of Hy to 1971 x {0} x I lifts
to Y by hypothesis. But now the point is that the union
(JEx DU I {1})u I x {0} x I)

is another model for the disk D?. The boundary is 9I¢ x {0}, the same as that of the disk 1% x {0}.
It follows that the map H; specifies a homotopy from f to the map eo Hy [ja-1, (3« and that this
homotopy is constant on the chosen model for S41. |

As e:Y — Z is an n-equivalence, the relative homotopy group m4(Z,Y’) vanishes, so that the
map of pairs h(—,1) : (D4, 891 — (Z,Y) is homotopic, rel S%1 to a map that lifts to Y by
the lemma. This new homotopy may be glued to h to obtain h. (Draw a picture) |

Theorem 3.6 (Whitehead’s theorem). Let e : Y — Z be a weak equivalence between cell com-
plexes. Then e is a homotopy equivalence.

Proof. Applying HELP with A = 0, X =Z,and f =idz gives amap §: Z — Y and a homotopy

h:idy ~eog.
/m /m
Y

. N
1dZ N
§\\

Z Z><I . VA

To see that g o e is also homotopic to the identity, use HELP with A=Y x 09I, X =Y x I, G the
map goe|]idy and H the constant homotopy.
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Y x0

Y><I

Y><8[><I

Y xIxI

The desired homotopy is then given by G.
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