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1. Mon, Feb. 14

The same method we used to prove the Whitehead theorem last time also gives the following
result.

Theorem 1.1. Let X be CW and suppose f : Y −→ Z is a weak equivalence (Y and Z are not
assumed to be CW). Then f induces a bijection

[X,Y ]
∼=−→ [X,Z].

Cellular Approximation

Proposition 1.2. The inclusion of the n-skeleton Xn ↪→ X is n-connected.

Proof. We must show that given any map of pairs (f, g) : (Dn, Sn−1) −→ (X,Xn), there is a
homotopy of f , rel Sn−1 to a map landing in Xn. Since Dn is compact, f(Dn) meets only finitely
many cells in X, and we may assume by induction that X = Xn ∪ ep, with p > n.

Lemma 1.3. f : Dn −→ Xn ∪ ep is homotopic, rel Sn−1 to a map f ′ : Dn −→ Xn ∪ ep which
misses a point y of ep.

See Hatcher, 4.10 for a proof of this. The space (Xn ∪ ep) − {y} deformation retracts onto Xn,
so we are done. �

The above result states that the homotopy groups πk(X) for k < n only depend on the n-
skeleton Xn. In particular, if we form Y = X ∪ eN , where N > n, then the map X −→ Y is also
an n-equivalence, since we have not changed the n-skeleton.

Theorem 1.4. (Cellular approximation theorem) A map f : X −→ Y of CW complexes is homo-
topic to a cellular map.

Proof. First, since any point of Y is connected by a path to Y0, we may homotope the map f |X0

to a map landing in Y0. By induction, assume that we have a homotopy h : Xn × I −→ Y such
that h0 = f and g = h1 lands in Yn. Given any attaching map j : Sn −→ Xn for an n + 1-cell of
X, we apply HELP with the pair (Dn+1, Sn) mapping to the (n+ 1)-equivalence Yn+1 ↪→ Y .

Sn
i0 //
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Sn × I
h◦j
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// Dn+1 × I

ddI
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i1
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I
I

I

This provides us with a map gn+1 : Dn+1 −→ Yn + 1 and the desired homotopy. �
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Remark 1.5. The same proof extends to show that if f : (X,A) −→ (Y,B) is a map of relative
CW complexes, then f is homotopic rel A to a cellular map.

So now we know that πk(Sn) ∼= 0 for k < n. Just give Sn the CW structure with one 0-cell and
one n-cell. Then any map Sk −→ Sn is homotopic, rel the basepoint, to the constant based map.

Example 1.6. A famous non-example of cellular map is the diagonal map ∆X : X −→ X × X.
For instance, consider X = S1. The 1-skeleton of the torus S1 × S1 is S1 ∨ S1, which does not
include the diagonal copy of S1 in the torus.

This causes difficulties when working with the cohomology ring. Recall that the cup product in
cohomology can be described as a composition

Hn(X)⊗Hp(X) −→ Hn+p(X ×X) −→ Hn+p(X),

where the second map is induced by the diagonal ∆X . Cellular cohomology is functorial only
with respect to cellular maps, which means that in order to compute the cup product in cellular
cohomology, one must first choose a cellular approximation to the diagonal map.

Let Ho(CW ) be the full subcategory of Ho(Top) whose objects are the CW complexes, and let
us denote by ιCW the inclusion ιCW : Ho(CW ) −→ Ho(Top).

2. Wed, Feb 16

Theorem 2.1. (CW approximation) There is a functor Γ : Top −→ CW and a natural transfor-
mation γ : ιCW ◦ Γ⇒ id whose components are weak equivalences.

Proof. Let X be a space. The CW complex ΓX will be a “CW approximation for the space X.”
The plan will be to build the CW complex ΓX by inductively defining the skeleta. We will have a
system of maps

X0
i0 //

γ0
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i1 //

γ1
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. . . // Xn

in //

γn
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Xn+1

//

γn+1
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. . .

X,

in which each γn is an n-equivalence.
We begin by setting X0 to be the set of points of X, with the discrete topology. The natural

map X0 −→ X is surjective on path components, i.e. a 0-equivalence.
Thus assume inductively that we have γn : Xn −→ X satisfying the above conditions. Let Kn

denote the set of all diagrams of maps

Sn
g //

��

Xn

γn

��
Dn+1 h // X,

where the map Dn+1 is thought of as a (based) null homotopy γn ◦ g ∼ ∗. Define

Xn+1 = Xn ∪qKnS
n qKnD

n+1.

The map γn+1 : Xn+1 −→ X is then given on each Dn+1 by the specified map h. This makes
γn+1 ◦ in = γn, and γn+1 is an n-equivalence since γn does (2-out-of-3). It remains to show that
πn(Xn+1) −→ πn(X) is injective and πn+1(Xn+1) −→ πn+1(X) is surjective.

The injectivity follows from cellular approximation. Any map α : Sn −→ Xn+1 is homotopic to
one landing in the n-skeleton, which is Xn. But if γn of this is null in the homotopy of X, we have
killed it in the homotopy of Xn+1 by construction.

For surjectivity, let β : Sn+1 −→ X be a class in X. We can represent this is a diagram
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Sn
g(∗) //

��

Xn

��
Dn+1

g // X,

where the top horizontal map is the constant map to the image g(∗) of the basepoint. We thus get
a map Dn+1 −→ Xn+1 which collapses the boundary, i.e. a map Sn+1 −→ Xn+1 representing a lift
of the class in X.

We now define Γ(X) = colimnXn, and we have an induced map γ : Γ(X) −→ X. The inclusion
Xn ↪→ Γ(X) is an n-equivalence, and we conclude that γ : Γ(X) −→ X is an n-equivalence. As
this is true for each n, γ is a weak equivalence.

It remains to consider functoriality. Let f : X −→ Y be a map. We define Γ(f) : Γ(X) −→ Γ(Y )
by defining appropriate maps fn : Xn −→ Yn. The map f0 : X0 −→ Y0 is just the map f again. If
we have already built fn, then we specify the map fn+1 by sending the cell Dn+1 labeled as (g, h)
isomorphically onto the cell of Yn+1 labeled by (f ◦ g, f ◦ h). There results a map Γ(f) making the
following diagram commute:

Γ(X)

γX

��

Γ(f) // Γ(Y )

γY

��
X

f // Y.
Furthermore, one can check that Γ(id) = id and Γ(f ◦ g) = Γ(f) ◦ Γ(g), so that Γ is a functor. �

Proposition 2.2. The functor Γ descends to a functor Ho(Γ) : Ho(Top) −→ Ho(CW ).

Proof. This follows from the (generalization of the) Whitehead theorem. Suppose that f ' g :
X −→ Y . The map γY : Γ(Y ) ∼−→ Y induces a bijection

[ΓX,ΓY ] ∼= [ΓX,Y ].

In particular, the classes of Γ(f) and Γ(g) are sent to the classes of f ◦ γX and g ◦ γX , respectively.
Since these classes coincide, we conclude that the classes of Γ(f) and Γ(g) similarly coincide. �

Corollary 2.3. The category Ho(CW ) “is” the homotopy category of spaces, that is, the localiza-

tion of Top with respect to the weak homotopy equivalences. The composition Top Γ−→ CW −→
Ho(CW ) is the universal functor from Top that takes weak equivalences to isomorphisms.

Proof. Given a functor F : Top −→ C that converts weak homotopy equivalences to isomorphisms,
we define F̃ : Ho(CW ) −→ C by F̃ (X) = F (X). Note that since F̃ converts homotopy equivalences
to isomorphisms, it follows that F factors through Ho(Top), so that F̃ is well-defined on morphisms.
The required natural isomorphism F̃ ◦Γ ∼= F is given on a space X by the map F (γX) : F̃ ◦Γ(X) =
F (ΓX) −→ F (X). �

Proposition 2.4. The above CW approximation theorem generalizes to the following statement:
let f : W −→ Y be a map of spaces. Then f can be factored, in a functorial way, as a composition
W

λ−→ Γ(Y,W )
γ−→ Y in which λ is a relative CW complex and γ is a weak equivalence.

3. Fri, Feb. 18

More on the homotopy category. Another (equivalent) formulation: the category wHo(Top) has
the same objects as Top, but we define

wHo(Top)(X,Y ) := [ΓX,ΓY ].
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The universal functor Top ι−→ wHo(Top) then looks like the identity on objects and like Γ on
morphisms.

Given a functor F : Top −→ C , a left derived functor for F is a functor F̃ : wHo(Top) −→ C
and a natural transformation F̃ ◦ ι ⇒ which is terminal among such data. That is, if we have
G : wHo(Top) −→ C and a transformation G◦ι⇒ F , then we get a natural transformation G⇒ F̃
making the appropriate diagram commute. The left derived functor is the closest approximation
to F (from the left) by a functor that takes weak equivalences to isomorphisms.

Proposition 3.1. Let F : Top −→ C be a functor that factors through Ho(Top). Then F has a
left derived functor LF : wHo(Top) = Ho(CW ) −→ C .

Proof. We define LF (X) = F (ΓX), and the transformation LF ◦ ι(X) −→ F (X) is given by the
CW approximation map γX .

If G is any other factorization equipped with a transformation α : G ◦ ι ⇒ F , we define the
transformation G⇒ LF to be the composition

G(X)
∼=←− G(ΓX) α−→ F (ΓX) = LF (X).

�

Example 3.2. (Topological Ext) Fix a space Z and consider the (contravariant) functor
Map(−, Z) : Topop −→ Top. This does not preserve all weak equivalences. For example, con-
sider the weak equivalence f : S0 −→ X from homework 2, where X is the topologist’s sine curve.
Take Z = S0. Then Map(X,S0) = S0 since the sine curve is connected, but Map(S0, S0) has four
points. So

Map(f, S0) : Map(X,S0) −→ Map(S0, S0)
is not a weak equivalence. The derive functor is Map(Γ(−), Z), and this is now a functor that
preserves weak equivalences. Because of contravariance, this is actually a right derived functor
(the map goes Map(W,Z) −→ Map(ΓW,Z)). So the “correct” (or derived) value of Map(X,S0) is
R Map(X,S0) ' Map(S0, S0), the four point space.

Cofiber sequences
Recall that we defined a homotopy fiber of a (based) map f : A −→ X. There is also a notion

of homotopy “cofiber”, defined as follows. The (homotopy) cofiber of a based map f : A −→ X
is the mapping cone

C(f) = X ∪A A ∧ I+/(A× {1}.
The space X ∪AA∧ I+ is the reduced mapping cylinder M∗(f), and we have C(f) ∼= M∗(f)/A.
The space A ∧ I+/(A × {1} is the reduced cone on A, denoted C∗(A), so we have C(f) =

X ∪A C∗(A). Yet another way to think of this construction: we replace the given map A
f−→ X by

the composition of based maps
A

j−→M∗(f)
p−→ X,

where j is the inclusion at time 1 and is a cofibration, as we have discussed, and p is a (based)
homotopy equivalence. We then take the point-set cofiber (quotient) of j, the replacement for f .
The map p induces a map p : C(f) = M∗(f)/A −→ X/A.

Proposition 3.3. Suppose f : A −→ X is a (based) cofibration. Then the induced map p :
C(f) −→ X/A is a based homotopy equivalence.

Proof. Since f is a based cofibration, we know that M∗(f) is a retract of the cylinder X ∧ I+. Let
r : X ∧ I+ −→ M∗(f) be a retraction. If we include X in the cylinder X ∧ I+ at time 1, then the
image of A under the composition to M∗(f) is a point, so we get an induced map r : X/A −→ C(f).
Moreover, the retraction r : X ∧ I+ −→M∗(f) is the identity on the subspace A∧ I+, so collapsing
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A ∧ I+ in the domain and codomain of r gives a map X/A ∧ I+ −→ X/A. At time 0, this is the
identity, since r was a retraction, and at time 1 this is the map p ◦ r.

It remains to show that r ◦p ' idM∗(f). We define a homotopy M∗(f)∧ I+ −→M∗(f) as follows.
On X ∧ I+, we use the retraction r. On C∗(A) ∧ I+, we use the homotopy C∗(A) ∧ I+ −→ C∗(A)
which at time t uses the linear isomorphism of [0, 1] with [t, 1]. �

This result says that if A −→ X is a cofibration, then the point-set quotient X/A has the
“correct”, or derived homotopy type.
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