CLASS NOTES MATH 527 (SPRING 2011) WEEK 5

BERTRAND GUILLOU

1. Mon, Feb. 14

The same method we used to prove the Whitehead theorem last time also gives the following result.

Theorem 1.1. Let X be CW and suppose $f : Y \longrightarrow Z$ is a weak equivalence (Y and Z are not assumed to be CW). Then f induces a bijection

$$[X,Y] \xrightarrow{\cong} [X,Z].$$

Cellular Approximation

Proposition 1.2. The inclusion of the n-skeleton $X_n \hookrightarrow X$ is n-connected.

Proof. We must show that given any map of pairs $(f,g) : (D^n, S^{n-1}) \longrightarrow (X, X_n)$, there is a homotopy of f, rel S^{n-1} to a map landing in X_n . Since D^n is compact, $f(D^n)$ meets only finitely many cells in X, and we may assume by induction that $X = X_n \cup e^p$, with p > n.

Lemma 1.3. $f: D^n \longrightarrow X_n \cup e^p$ is homotopic, rel S^{n-1} to a map $f': D^n \longrightarrow X_n \cup e^p$ which misses a point y of e^p .

See Hatcher, 4.10 for a proof of this. The space $(X_n \cup e^p) - \{y\}$ deformation retracts onto X_n , so we are done.

The above result states that the homotopy groups $\pi_k(X)$ for k < n only depend on the *n*-skeleton X_n . In particular, if we form $Y = X \cup e^N$, where N > n, then the map $X \longrightarrow Y$ is also an *n*-equivalence, since we have not changed the *n*-skeleton.

Theorem 1.4. (Cellular approximation theorem) A map $f : X \longrightarrow Y$ of CW complexes is homotopic to a cellular map.

Proof. First, since any point of Y is connected by a path to Y_0 , we may homotope the map $f |_{X_0}$ to a map landing in Y_0 . By induction, assume that we have a homotopy $h: X_n \times I \longrightarrow Y$ such that $h_0 = f$ and $g = h_1$ lands in Y_n . Given any attaching map $j: S^n \longrightarrow X_n$ for an n + 1-cell of X, we apply HELP with the pair (D^{n+1}, S^n) mapping to the (n+1)-equivalence $Y_{n+1} \hookrightarrow Y$.

This provides us with a map $g_{n+1}: D^{n+1} \longrightarrow Y_n + 1$ and the desired homotopy.

Remark 1.5. The same proof extends to show that if $f : (X, A) \longrightarrow (Y, B)$ is a map of relative CW complexes, then f is homotopic rel A to a cellular map.

So now we know that $\pi_k(S^n) \cong 0$ for k < n. Just give S^n the CW structure with one 0-cell and one *n*-cell. Then any map $S^k \longrightarrow S^n$ is homotopic, rel the basepoint, to the constant based map.

Example 1.6. A famous non-example of cellular map is the diagonal map $\Delta_X : X \longrightarrow X \times X$. For instance, consider $X = S^1$. The 1-skeleton of the torus $S^1 \times S^1$ is $S^1 \vee S^1$, which does not include the diagonal copy of S^1 in the torus.

This causes difficulties when working with the cohomology ring. Recall that the cup product in cohomology can be described as a composition

$$\mathrm{H}^{n}(X) \otimes \mathrm{H}^{p}(X) \longrightarrow \mathrm{H}^{n+p}(X \times X) \longrightarrow \mathrm{H}^{n+p}(X),$$

where the second map is induced by the diagonal Δ_X . Cellular cohomology is functorial only with respect to cellular maps, which means that in order to compute the cup product in cellular cohomology, one must first choose a cellular approximation to the diagonal map.

Let $\mathbf{Ho}(CW)$ be the full subcategory of $\mathbf{Ho}(\mathbf{Top})$ whose objects are the CW complexes, and let us denote by $\iota_C W$ the inclusion $\iota_C W : \mathbf{Ho}(CW) \longrightarrow \mathbf{Ho}(\mathbf{Top})$.

2. Wed, Feb 16

Theorem 2.1. (CW approximation) There is a functor $\Gamma : \mathbf{Top} \longrightarrow CW$ and a natural transformation $\gamma : \iota_{CW} \circ \Gamma \Rightarrow \mathrm{id}$ whose components are weak equivalences.

Proof. Let X be a space. The CW complex ΓX will be a "CW approximation for the space X." The plan will be to build the CW complex ΓX by inductively defining the skeleta. We will have a system of maps

in which each γ_n is an *n*-equivalence.

We begin by setting X_0 to be the set of points of X, with the discrete topology. The natural map $X_0 \longrightarrow X$ is surjective on path components, i.e. a 0-equivalence.

Thus assume inductively that we have $\gamma_n : X_n \longrightarrow X$ satisfying the above conditions. Let K_n denote the set of all diagrams of maps

where the map D^{n+1} is thought of as a (based) null homotopy $\gamma_n \circ g \sim *$. Define

$$X_{n+1} = X_n \cup_{\amalg_{K_n} S^n} \amalg_{K_n} D^{n+1}.$$

The map $\gamma_{n+1} : X_{n+1} \longrightarrow X$ is then given on each D^{n+1} by the specified map h. This makes $\gamma_{n+1} \circ i_n = \gamma_n$, and γ_{n+1} is an *n*-equivalence since γ_n does (2-out-of-3). It remains to show that $\pi_n(X_{n+1}) \longrightarrow \pi_n(X)$ is injective and $\pi_{n+1}(X_{n+1}) \longrightarrow \pi_{n+1}(X)$ is surjective.

The injectivity follows from cellular approximation. Any map $\alpha : S^n \longrightarrow X_{n+1}$ is homotopic to one landing in the *n*-skeleton, which is X_n . But if γ_n of this is null in the homotopy of X, we have killed it in the homotopy of X_{n+1} by construction.

For surjectivity, let $\beta: S^{n+1} \longrightarrow X$ be a class in X. We can represent this is a diagram

where the top horizontal map is the constant map to the image g(*) of the basepoint. We thus get a map $D^{n+1} \longrightarrow X_{n+1}$ which collapses the boundary, i.e. a map $S^{n+1} \longrightarrow X_{n+1}$ representing a lift of the class in X.

We now define $\Gamma(X) = \operatorname{colim}_n X_n$, and we have an induced map $\gamma : \Gamma(X) \longrightarrow X$. The inclusion $X_n \hookrightarrow \Gamma(X)$ is an *n*-equivalence, and we conclude that $\gamma : \Gamma(X) \longrightarrow X$ is an *n*-equivalence. As this is true for each n, γ is a weak equivalence.

It remains to consider functoriality. Let $f: X \longrightarrow Y$ be a map. We define $\Gamma(f): \Gamma(X) \longrightarrow \Gamma(Y)$ by defining appropriate maps $f_n: X_n \longrightarrow Y_n$. The map $f_0: X_0 \longrightarrow Y_0$ is just the map f again. If we have already built f_n , then we specify the map f_{n+1} by sending the cell D^{n+1} labeled as (g, h) isomorphically onto the cell of Y_{n+1} labeled by $(f \circ g, f \circ h)$. There results a map $\Gamma(f)$ making the following diagram commute:

$$\begin{array}{c|c} \Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) \\ \gamma_X & & & & & \\ \gamma_X & & & & \\ & & & & \\ X \xrightarrow{f} & Y. \end{array}$$

Furthermore, one can check that $\Gamma(id) = id$ and $\Gamma(f \circ g) = \Gamma(f) \circ \Gamma(g)$, so that Γ is a functor.

Proposition 2.2. The functor Γ descends to a functor $Ho(\Gamma) : Ho(Top) \longrightarrow Ho(CW)$.

Proof. This follows from the (generalization of the) Whitehead theorem. Suppose that $f \simeq g$: $X \longrightarrow Y$. The map $\gamma_Y : \Gamma(Y) \xrightarrow{\sim} Y$ induces a bijection

$$[\Gamma X, \Gamma Y] \cong [\Gamma X, Y].$$

In particular, the classes of $\Gamma(f)$ and $\Gamma(g)$ are sent to the classes of $f \circ \gamma_X$ and $g \circ \gamma_X$, respectively. Since these classes coincide, we conclude that the classes of $\Gamma(f)$ and $\Gamma(g)$ similarly coincide.

Corollary 2.3. The category $\mathbf{Ho}(CW)$ "is" <u>the homotopy category of spaces</u>, that is, the localization of **Top** with respect to the weak homotopy equivalences. The composition $\mathbf{Top} \xrightarrow{\Gamma} CW \longrightarrow$ $\mathbf{Ho}(CW)$ is the universal functor from **Top** that takes weak equivalences to isomorphisms.

Proof. Given a functor $F : \mathbf{Top} \longrightarrow \mathscr{C}$ that converts weak homotopy equivalences to isomorphisms, we define $\tilde{F} : \mathbf{Ho}(CW) \longrightarrow \mathscr{C}$ by $\tilde{F}(X) = F(X)$. Note that since \tilde{F} converts homotopy equivalences to isomorphisms, it follows that F factors through $\mathbf{Ho}(\mathbf{Top})$, so that \tilde{F} is well-defined on morphisms. The required natural isomorphism $\tilde{F} \circ \Gamma \cong F$ is given on a space X by the map $F(\gamma_X) : \tilde{F} \circ \Gamma(X) = F(TX) \longrightarrow F(X)$.

Proposition 2.4. The above CW approximation theorem generalizes to the following statement: let $f: W \longrightarrow Y$ be a map of spaces. Then f can be factored, in a functorial way, as a composition $W \xrightarrow{\lambda} \Gamma(Y, W) \xrightarrow{\gamma} Y$ in which λ is a relative CW complex and γ is a weak equivalence.

3. Fri, Feb. 18

More on the homotopy category. Another (equivalent) formulation: the category w Ho(Top) has the same objects as **Top**, but we define

$$w$$
Ho(**Top**)(X, Y) := [$\Gamma X, \Gamma Y$].

The universal functor $\operatorname{Top} \xrightarrow{\iota} w\operatorname{Ho}(\operatorname{Top})$ then looks like the identity on objects and like Γ on morphisms.

Given a functor $F : \mathbf{Top} \longrightarrow \mathscr{C}$, a **left derived functor** for F is a functor $\tilde{F} : w\mathbf{Ho}(\mathbf{Top}) \longrightarrow \mathscr{C}$ and a natural transformation $\tilde{F} \circ \iota \Rightarrow$ which is terminal among such data. That is, if we have $G : w\mathbf{Ho}(\mathbf{Top}) \longrightarrow \mathscr{C}$ and a transformation $G \circ \iota \Rightarrow F$, then we get a natural transformation $G \Rightarrow \tilde{F}$ making the appropriate diagram commute. The left derived functor is the closest approximation to F (from the left) by a functor that takes weak equivalences to isomorphisms.

Proposition 3.1. Let $F : \mathbf{Top} \longrightarrow \mathscr{C}$ be a functor that factors through $\mathbf{Ho}(\mathbf{Top})$. Then F has a left derived functor $\mathbb{L}F : w\mathbf{Ho}(\mathbf{Top}) = \mathbf{Ho}(CW) \longrightarrow \mathscr{C}$.

Proof. We define $\mathbb{L}F(X) = F(\Gamma X)$, and the transformation $\mathbb{L}F \circ \iota(X) \longrightarrow F(X)$ is given by the CW approximation map γ_X .

If G is any other factorization equipped with a transformation $\alpha : G \circ \iota \Rightarrow F$, we define the transformation $G \Rightarrow \mathbb{L}F$ to be the composition

$$G(X) \xleftarrow{=} G(\Gamma X) \xrightarrow{\alpha} F(\Gamma X) = \mathbb{L}F(X).$$

Example 3.2. (Topological Ext) Fix a space Z and consider the (contravariant) functor $Map(-, Z) : \mathbf{Top}^{op} \longrightarrow \mathbf{Top}$. This does <u>not</u> preserve all weak equivalences. For example, consider the weak equivalence $f : S^0 \longrightarrow X$ from homework 2, where X is the topologist's sine curve. Take $Z = S^0$. Then $Map(X, S^0) = S^0$ since the sine curve is connected, but $Map(S^0, S^0)$ has four points. So

$$\operatorname{Map}(f, S^0) : \operatorname{Map}(X, S^0) \longrightarrow \operatorname{Map}(S^0, S^0)$$

is not a weak equivalence. The derive functor is $\operatorname{Map}(\Gamma(-), Z)$, and this is now a functor that preserves weak equivalences. Because of contravariance, this is actually a <u>right</u> derived functor (the map goes $\operatorname{Map}(W, Z) \longrightarrow \operatorname{Map}(\Gamma W, Z)$). So the "correct" (or derived) value of $\operatorname{Map}(X, S^0)$ is $\mathbb{R} \operatorname{Map}(X, S^0) \simeq \operatorname{Map}(S^0, S^0)$, the four point space.

Cofiber sequences

Recall that we defined a homotopy fiber of a (based) map $f : A \longrightarrow X$. There is also a notion of homotopy "cofiber", defined as follows. The **(homotopy) cofiber** of a based map $f : A \longrightarrow X$ is the mapping cone

$$C(f) = X \cup_A A \wedge I_+ / (A \times \{1\}.$$

The space $X \cup_A A \wedge I_+$ is the **reduced mapping cylinder** $M_*(f)$, and we have $C(f) \cong M_*(f)/A$. The space $A \wedge I_+/(A \times \{1\})$ is the **reduced cone** on A, denoted $C_*(A)$, so we have $C(f) = X \cup_A C_*(A)$. Yet another way to think of this construction: we replace the given map $A \xrightarrow{f} X$ by the composition of based maps

$$A \xrightarrow{j} M_*(f) \xrightarrow{p} X,$$

where j is the inclusion at time 1 and is a cofibration, as we have discussed, and p is a (based) homotopy equivalence. We then take the point-set cofiber (quotient) of j, the replacement for f. The map p induces a map $\bar{p}: C(f) = M_*(f)/A \longrightarrow X/A$.

Proposition 3.3. Suppose $f : A \longrightarrow X$ is a (based) cofibration. Then the induced map $\overline{p} : C(f) \longrightarrow X/A$ is a based homotopy equivalence.

Proof. Since f is a based cofibration, we know that $M_*(f)$ is a retract of the cylinder $X \wedge I_+$. Let $r: X \wedge I_+ \longrightarrow M_*(f)$ be a retraction. If we include X in the cylinder $X \wedge I_+$ at time 1, then the image of A under the composition to $M_*(f)$ is a point, so we get an induced map $\overline{r}: X/A \longrightarrow C(f)$. Moreover, the retraction $r: X \wedge I_+ \longrightarrow M_*(f)$ is the identity on the subspace $A \wedge I_+$, so collapsing

 $A \wedge I_+$ in the domain and codomain of r gives a map $X/A \wedge I_+ \longrightarrow X/A$. At time 0, this is the identity, since r was a retraction, and at time 1 this is the map $\overline{p} \circ \overline{r}$.

It remains to show that $\overline{r} \circ \overline{p} \simeq \operatorname{id}_{M_*(f)}$. We define a homotopy $M_*(f) \wedge I_+ \longrightarrow M_*(f)$ as follows. On $X \wedge I_+$, we use the retraction r. On $C_*(A) \wedge I_+$, we use the homotopy $C_*(A) \wedge I_+ \longrightarrow C_*(A)$ which at time t uses the linear isomorphism of [0, 1] with [t, 1].

This result says that if $A \longrightarrow X$ is a cofibration, then the point-set quotient X/A has the "correct", or derived homotopy type.