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WEEK 8

BERTRAND GUILLOU

1. Mon, Mar. 7

Matt Ando lectured today.

2. Wed, Mar. 9

Last time, we used Blakers-Massey to prove the Freudenthal theorem, which says that if X is well-
pointed and n-connected, then the map suspension map πj(X) −→ πj+1(ΣX) is an isomorphism
for j ≤ 2n and a surjection for j = 2n+ 1. Of course, important examples come from taking X to
be a sphere.

Example 2.1. (1) Take X = S2. We know S2 is 1-connected, so

πj(S2) −→ πj+1(S3)

is an isomorphism for j ≤ 2 and a surjection for j = 3. Recall that we know π2(S2) ∼= Z from the
long exact sequence for the Hopf fibration η. The Freudenthal theorem then says that π3(S3) ∼= Z
and that π4(S3) is cyclic (it turns out this is Z/2).

(2) Taking X = S3, since S3 is 2-connected, we get isomorphisms

π3(S3) ∼= π4(S4) ∼= Z, π4(S3) ∼= π5(S4) ∼= Z/2

(3) As the connectivity of spheres improves as we suspend, for any fixed j and k, the sequence

πj(Sk) −→ πj+1(Sk+1) −→ πj+2(Sk+2) −→ . . .

eventually stablizes to produce the stable homotopy groups of spheres. We write

πsn(S0) = colim
k

πn+k(Sk).

This stabilizes at πsn(S0) = π2n+2(Sn+2). The first few stable homotopy groups of spheres are

πs0
∼= π2(S2) ∼= Z πs1

∼= π4(S3) ∼= Z/2 πs2
∼= π6(S4) ∼= Z/2

πs3
∼= π8(S5) ∼= Z/24 πs4

∼= π10(S6) ∼= 0 πs5
∼= 0

πs6
∼= Z/2 πs7

∼= Z/240 πs8
∼= Z/2⊕ Z/2

(4) One can also talk of stable homotopy groups for arbitrary based spaces. If X is a based
space, then we define the nth stable homotopy group of X to be

πsn(X) = colim
k

πk+n(ΣkX).

These stabilize as above.

We will return to stable homotopy groups when we discuss the stable homotopy category of
spectra.

The Blakers-Massey theorem also allows us to compare wedges with products:
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Proposition 2.2. Let X be p-connected and Y be q-connected well-pointed space (p, q ≥ 2). Then
the inclusion X ∨ Y ↪→ X × Y is p+ q-connected.

Proof. Since X and Y are well-pointed, the square
∗ //

��

Y

iY
��

X
iX // X ∨ Y

is a homotopy pushout square. Homotopy excision tells us that the homotopy pullback X ×hX∨Y Y
is (p+ q − 1)-connected. As we have discussed, this is equivalent to the statement that the map

F (∗ → X) −→ F (Y iY−→ X ∨ Y )

is (p+ q − 1)-connected. Note that the first fiber is just Ω(X). So the maps

πi(X) ∼= πi−1(Ω(X)) −→ πi−1(F (iY )) ∼= πi(X ∨ Y, Y )

are isomorphisms for i ≤ p+ q − 1 and surjective for i = p+ q.
Consider now the long exact sequence for the pair (X ∨ Y, Y ):

. . . −→ πi(Y ) −→ πi(X ∨ Y ) −→ πi(X ∨ Y, Y ) −→ . . . .

The map X ∨ Y −→ Y which collapses X to a point gives a splitting to iY , and we conclude that

πi(X ∨ Y ) ∼= πi(Y )⊕ πi(X ∨ Y, Y ).

Putting this together, we learn that

πi(X ∨ Y ) ∼= πi(Y )⊕ πi(X)

for i ≤ p + q − 1. To see that πp+q(X ∨ Y ) −→ πp+q(X × Y ), note that the inclusions iX and iY
induce a splitting for this map, so that in fact πi(X ∨ Y ) −→ πi(X × Y ) is onto for every i. �

Corollary 2.3. Let n ≥ 2. Then πn(Sn ∨ Sn) ∼= Z⊕ Z.

We will use this to prove the Hurewicz theorem. Let α : Sn −→ X be any map. Passing to
homology gives a map

Z ∼= Hn(Sn)
H(α)−−−→ Hn(X),

and we define h(α) to be the image of 1 under this map.

Lemma 2.4. The resulting map h : πn(Sn) −→ Hn(X) is a well-defined homomorphism.

Proof. Well-definedness is the statement that homotopic maps induce the same map on homology.
To see this is a homomorphism, recall that if α, β ∈ πn(Sn), then their sum is defined as the class
of

Sn
p−→ Sn ∨ Sn α∨β−−→ X ∨X ∇−→ X.

The conclusion now follows, using that H̃n(Y ∨ Z) ∼= H̃n(Y )⊕ H̃n(Z). �

3. Fri, Mar. 11

Theorem 3.1. Let X be n− 1-connected. Then the Hurewicz map is an isomorphism

πn(X)
∼=−→ Hn(X)

if n ≥ 2. If n = 1, this is the abelianization map.
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Proof. The n = 1 statement should be familiar from 525, so we assume n ≥ 2.
As homology takes weak equivalences to isomorphisms, we may assume X is CW. Since it is

n− 1-connected, we may assume it has a single 0-cell and no cells in dimensions between 0 and n.
Furthermore, the (cellular) homology group Hn and the homotopy group πn of X only depends on
the n+ 1-skeleton Xn+1. So we assume that X is a cofiber of a map

A =
∨
Sn −→ B =

∨
Sn −→ X.

We then have a diagram
πn(A) //

��

πn(B) //

��

πn(X) //

��

0

Hn(A) // Hn(B) // Hn(X) // 0

The bottom row is exact because A α−→ B
β−→ X is a cofiber sequence. The Blakers-Massey theorem

now tells us that since the maps A −→ ∗ and A
α−→ B are n-connected and n − 1-connected,

respectively, the map A −→ F (β) is 2n − 2-connected. As n ≥ 2, n ≤ 2n − 2 and we get
πn(A) � πn(F ). It follows that the top row above is exact.

Lemma 3.2. The Hurewicz map is an isomorphism for any wedge
∨
Sn.

Proof. We showed last time that πn(Sn ∨ Sn) ∼= Z, where generators are given by the two natural
inclusions Sn ↪→ Sn ∨ Sn, and it follows that the Hurewicz map is an isomorphism. by induction,
we get the same result for any finite wedge. For an infinite wedge, we have

Hn(
∨
Sn) ∼=

⊕
Hn(Sn) (n ≥ 1)

Since Sn is compact, any map Sn −→
∨
Sn must have image contained in a finite wedge. �

�

We discuss a few more consequences of Homotopy Excision. Recall that, given a map f : A −→
X, we previously defined a map ϕ : F (f) −→ ΩC(f). This induces a map

πi(X,A) ∼= πi−1(F (f)) −→ πi(C(f)),

and the latter may be reinterpreted as πi(X/A) if f is a cofibration.

Proposition 3.3. Suppose that A is m-connected and that f : A −→ X is an n-equivalence. Then
the map

F (f) −→ ΩC(f)

is an m+ n-equivalence.

Proof. Consider the homotopy pushout square

A //

f

��

CA

��
X // C(f).

The inclusion A ↪→ CA is an m+ 1-equivalence, and f is an n-equivalence. By Blakers-Massey, it
follows that induced map

F (f) −→ F (CA −→ C(f)) ' ΩC(f)

is an m+ n-equivalence. �
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Remark 3.4. Another way to interpret the above result in the case that f is a cofibration is that

πi(X,A) −→ πi(C(f)) ∼= πi(X/A)

is an isomorphism for i < m+ n+ 1 and a surjection for i = m+ n+ 1.

As we have said previously, the analogue of the map F (f) −→ ΩC(f) in spectra is always an
equivalence.

We use the above result to prove a result of Whitehead.

Theorem 3.5 (Whitehead). Let f : X −→ Y be a map between simply connected spaces such that
H∗(f) is an isomorphism. Then f is a weak homotopy equivalence.

Proof. The cofiber sequence X
f−→ Y −→ C(f) induces a long exact sequence in homology, and we

deduce that the homology groups of C(f) vanish. Note that since A and X are 1-connected, it
follows that F (f) is 0-connected. By the previous result, π0(F (f)) ∼= π1(C(f)), so C(f) is simply
connected. Since it also has no homology, the Hurewicz theorem implies that C(f) is weakly
contractible (C(f) −→ ∗ is a weak equivalence).

Since f is a 1-equivalence and X is 1-connected, the previous result tells us that

π1(F (f)) ∼= π2(C(f)) ∼= 0,

so that f is in fact a 2-equivalence. By induction, the same argument will show that f is an
n-equivalence for every n, i.e. a weak equivalence. �

Remark 3.6. There is a more general form of this result in which one assumes only that the spaces
X and Y are simple.

If π1(X) is nonabelian, this result can easily fail. For instance, there are spaces with nontrivial
fundamental group but trivial homology. In this case, the fundamental group must be a nontrivial
group with trivial abelianization. In other words, the group must be generated by commutators.
Any finite simple group, like A5, gives such an example.

Remark 3.7. It is not enough to simply know that two spaces are simply connected and have the
same homology. For instance, consider X = S2 ∨ S4 and Y = CP2. The homology of both spaces
is Z in degrees 0, 2, and 4. But there is no map between them inducing a homology isomorphism.

There is a natural map S2 ∼= CP1 ↪→ CP2 given an isomorphism on H2, and the quotient map
CP2 −→ CP2/CP1 ∼= S4 gives an H4-isomorphism. But there is no map S4 −→ CP2 inducing the
H4-iso. Indeed, the fiber sequence S1 −→ S5 −→ CP2 shows that π4(CP2) ∼= 0 and π3(CP2) ∼= 0,
so that no such map can exist by Whitehead. Note also that if we consider cohomology, then it is
clear that there can be no map inducing a H∗-isomorphism since Y has nontrivial cup products,
whereas X does not.
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