Problem 1. Show that if \(g : A \to Y \) is surjective, then so is \(\iota_X : X \to X \cup_A Y \).

Problem 2. Let \(A \subseteq X \) be a subspace, and let \(f : A \to X \) be the inclusion. As usual, we let \(*\) denote a one-point space. Show that \(X \cup_A * \cong X/A \). (Hint: Show they satisfy the same universal property.)

Problem 3. For any space \(A \), let \(C(A) \) be the cone on \(A \). We can think of \(A \) as a subspace of \(C(A) \) via the inclusion \(i_0 : A \to C(A) \) at time 0.

(a) Show that a map \(g : A \to Y \) is null if and only if it extends to a map \(G : C(A) \to Y \).

(b) Suppose given a map \(f : A \to X \) and let \(C(f) = X \cup_A C(A) \) be the mapping cone on \(f \).
Given a map \(\varphi : X \to Y \), show that \(\varphi \circ f \) is null if and only if \(\varphi \) extends over the mapping cone \(C(f) \).

Problem 4.

(1) Let \(x \) and \(y \) be any two (distinct) points in \(\mathbb{R}^3 \). Use the van Kampen theorem to compute \(\pi_1(\mathbb{R}^3 - \{x, y\}) \).

(2) If a third point \(z \) is thrown into the mix, what is the resulting fundamental group (of \(\mathbb{R}^3 - \{x, y, z\} \))?

Problem 5. Let \(X \) be \(\mathbb{R}^3 \) with two of the coordinate axes removed. Compute \(\pi_1(X) \). (Hint: Start by showing that \(X \) is homotopy equivalent to \(S^2 \) with four points removed.)