
35. Mon, Apr. 14

Ok, so we know that ⇡n(RP2) ⇠= ⇡n(S2). What are these groups? We will show later that
⇡2(S2) ⇠= Z. Just like for S1, a generator for this group is the identity map S2 �! S2. But the
fascinating thing is that, in contrast to S1, there are plenty of interesting higher homotopy groups!
Here is a table of homotopy groups of spheres, taken from Wikipedia.

There are several things to note in this table.

(1) We have ⇡n(S3) = ⇡n(S2) for n � 3. There is a map S3 �! S2 that induces this isomor-
phism on homotopy groups. It is the Hopf map ⌘ we studied before (C2 � {0} �! CP1).
This map is not a cover, since the fibers are circles. But this is a higher analogue of a cov-
ering: it is an S1-bundle. The analogue of the “evenly covered neighborhoos” here is called
“local triviality” of the bundle. This means that each point in x 2 CP1 has a neighborhood
U such that ⌘�1(U) ⇠= S1⇥U . Remembering that a point in CP1 is of the form x = [z1 : z2],
consider the open sets U1 = {[z1 : z2]|z1 6= 0} and U2 = {[z1 : z2]|z2 6= 0}. These certainly
cover CP1, and the isomorphism

⌘�1(U1) ⇠= S1 ⇥ U1

is

(z1, z2) 7!
✓

z1
kz1k

, [z1 : z2]

◆
.

A bundle still has a lifting property for paths and homotopies, but the lifts are no longer
unique. This means that we can’t necessarily lift an arbitrary map Y �! S2 up to a map
Y �! S3, and it need not be true that all higher homotopy groups of S2 are identified with
those of S3. It turns out that what happens here is that we have a “long exact sequence”
relating the homotopy groups of S3, S2, and S1 (most of which are trivial).

(2) We have ⇡n(Sk) = 0 if n < k. The argument is similar to the one that showed the higher
spheres are all simply-connected. The main step is to show that any map Sn �! Sk is
homotopic to a nonsurjective map if n < k.

(3) The answers are eventually constant on each diagonal. There is a suspension homomorphism
⇡n(Sk) �! ⇡n+1(Sk+1) that induces these isomorphisms. The stable answer for ⇡k+n(Sk)
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is known as the nth stable homotopy group of spheres and is written ⇡s
n. We have

⇡s
0 = Z, ⇡s

1 = Z/2, ⇡s
2 = Z/2, ⇡s

3 = Z/24.

These groups are known out to around n = 60.
(4) Most of the unstable groups are finite. The only infinite ones are ⇡n(Sn) = Z and

⇡4k�1(S2k). The latter are all Z⇥(finite group). This is a theorem of J. P. Serre. This
implies that all of the stable groups are finite, except ⇡s

0 = Z.
Ok, so homotopy groups are hard! But there are a few more examples of spaces whose homotopy

groups are all known, so let’s mention those before we abandon all hope and despair.

Example 35.1. Remember that we have a double cover Sn �! RPn inducing an isomorphism on
all higher homotopy groups. But Sn does not have any homotopy groups until ⇡n, so this means
that ⇡k(RPn) = 0 if 1 < k < n. The inclusion Sn ,! Sn+1, (x0, . . . , xn) 7! (x0, . . . , xn, 0) induces
an inclusion RPn ,! RPn+1. As n gets higher, we lose more and more homotopy groups. In the
limit, S1 =

S
n S

n has no homotopy groups (and in fact it is contractible). Similarly, RP1 has
only a fundamental group of Z/2 but no higher homotopy groups.

Example 35.2. There is an analogous story for CPn. Here, we have for every n, an S1-bundle
S2n�1 ' Cn � {0} �! CPn. This map induces an isomorphism on ⇡k for k � 3 and gives
⇡2(CPn) ⇠= ⇡1(S1) ⇠= Z. So the only nontrivial homotopy group of CP1 is ⇡2(CP1) ⇠= Z.

36. Wed, Apr. 16

Exam 2

37. Fri, Apr. 18

Last time, we discussed higher homotopy groups of some familiar spaces. We saw that most
of the Mg and Ng have no higher homotopy groups. On the other hand, basic spaces like S2

and RP2 have very complicated (and unknown) higher homotopy groups. The other examples in
which we had complete understanding of the higher homotopy groups were the infinite-dimensional
complexes RP1 and CP1. It turns out that this is quite typical: a finite cell complex almost always
has infinitely many nontrivial homotopy groups!

This is rather disheartening. We think of a cell complex as an essentially finite amount of
information. It would be nice if we only got finitely many algebraic objects out of it. There is
such a construction: homology. As we will see, this will combine a number of the ideas we have
recently encountered: the fundamental group and Euler characteristics. A good way to think about
homology is that it is a more sophisticated version of the Euler characteristic.

We will deal with one of the (computationally) simplest forms of homology, known as cellular
homology. Suppose that X is a CW complex, and define the group of n-chains on X, denoted
Cn(X), to be the free abelian group on the set of n-cells. .

X

ti2T
niti,

where only finitely many ni are nonzero. Recall the universal property of the free abelian group
construction:

Proposition 37.1. Let Z[T ] be the free abelian group on a set T . Denote by i : T �! Z[T ] the
function defined by i(t) = 1 · t. If A is any abelian group and f : T �! A is any function, then
there exists a unique homomorphism f̃ : Z[T ] �! A such that f̃ � i = f .
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Proof. The point is that every element of Z[T ] is a finite linear combination of elements from T .
Since f̃ is supposed to be a homomorphism, this forces

f̃(
X

niti) =
X

nif(ti).

⌅

We are going to form a chain complex out of the various Cn(X). In general, a chain complex
is a collection of abelian groups Cn, one for each n 2 Z, and di↵erentials (homomorphisms)
dn : Cn �! Cn�1 such that dn�1 � dn = 0.

Let’s start with the cellular d1 : C1(X) �! C0(X). By the universal property of the free
abelian group C1(X), it su�ces to specify the value of d1 on the generators, namely the 1-cells of
X. Recall that a 1-cell is a map e : [0, 1] �! X attached via a map {0, 1} �! X0. We define
d1(e) = e(1)� e(0).

Ok, what about d2 : C2(X) �! C1(X)? Again, it su�ces to specify d2 on each 2-cell. If f is a
2-cell in X, we need to define d2(f) =

P
niei for some appropriate coe�cients ni. Pick a 1-cell ei.

The coe�cient ni is determined as follows: consider the map S1 �! S1 defined by

S1 f�! X1 ⇣ X1/X0 ⇠=
_

S1 ei�! S1.

The map labelled f here is the attaching map, and the last map labelled ei is the map which
collapses all circles not corresponding to the edge ei. The coe�cient ni needed for d2(f) is the class
of this map in ⇡1(S1) ⇠= Z.

Now you know how to define any dn : Cn(X) �! Cn�1(X): The coe�cients in the expansion
are the homotopy class of the composite

Sn�1 f�! Xn�1 ⇣ Xn�1/Xn�2 ⇠=
_

Sn�1 ei�! Sn�1

in the group ⇡n�1(Sn�1) ⇠= Z.
It remains to check that dn�1 � dn = 0. We will not give the proof in general, but here is the

idea in the case n = 2. It su�ces to show that d1(d2(f)) = 0 for each 2-cell f . The 1-chain d2(f) is

defined using the attaching map S1 f�! X1 for f . Essentially, d2(f) is telling us how this attaching
map traverses the various edges in X1. Since we are mapping a circle in, whenever we traverse an
edge leading to a vertex v, we must also traverse some edge leaving that vertex. So when we go
to compute d1(d2(f)), each time the vertex v arises with a sign +1, it will also necessarily appear
again with a sign �1. So, in the end, the 0-cells will all cancel out in d1(d2(f)).

Let’s look at some examples.

Example 37.2. Take X = S2. Pick the CW structure having a single vertex and a single 2-cell.
Then C1(X) = 0, so both d2 and d1 must be the zero map. The chain complex C⇤(S2) is

Z d2�! 0
d1�! Z.

Example 37.3. Take X = S2. Pick the CW structure having a single vertex, a single edge, and
two 2-cells attached via the identity map S1 ⇠= S1. Then C0(S2) = C1(S2) = Z and C2(S2) = Z2.
The map

d1 : C1 = Z �! C0 = Z
is d1(e) = 0 since the edge e is a loop. If we write f1 and f2 for the 2-cells, we see that d2(f1) =
d2(f2) = e. Thus the resulting chain complex is

Z2 (1 1)���! Z 0�! Z.
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Example 37.4. Take X = S2. Pick the CW structure having two cells in each degree  2. Here
each attaching map Sn�1 �! Xn�1 is an identity map. Write x1 and x2 for the vertices and e1
and e2 for the edges. We have d1(ei) = x2 � x1. Similarly, we have d2(fi) = e1 � e2. The resulting
chain complex is

Z2
⇣

1 1
�1 �1

⌘
// Z2

⇣
�1 �1
1 1

⌘
// Z2
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