
3. Wed, Jan. 22

Last time, we introduced a “path-composition” operation (concatenation). The path � ·� means
first travel along � in double time, then travel along � in double time.

Proposition 3.1. The above operation only depends on path-homotopy classes. That is, if � 'p �
0

and � 'p �
0, then � · � 'p �

0 · �0.

Proof. Let L : � 'p �0 and R : � 'p �0 be path-homotopies.
We define a new path homotopy by

H(s, t) =

⇢
L(2s, t) s 2 [0, 1/2]

R(2s� 1, t) s 2 [1/2, 1].

⌅
This tells us that the concatenation operation is well-defined on path-homotopy classes. We will

next check that it gives a well-behaved algebraic operation. For any point x 2 X, we denote by cx
the constant path at x in X.

Proposition 3.2. Let � (from x to y), �, and µ be composable paths in X. Concatenation of
path-homotopy classes satisfies the following properties.

(1) (unit law) [cx] · [�] = [�] = [�] · [cy]
(2) (associativity) ([�] · [�]) · [µ] = [�] · ([�] · [µ])
(3) (inverses) Define �(s) = �(1� s). Then [�] · [�] = [cx] and [�] · [�] = [cy].

Proof. (1) Define

h(s, t) =

⇢
x 2s 2 [0, 1� t]

�(2s�1+t
1+t ) 2s 2 [1� t, 2].

(2) Define

h(s, t) =

8
<

:

�( 4s
1+t) s 2 [0, 1+t

4 ]
�(4s� 1� t) s 2

⇥
1+t
4 , 2+t

4

⇤

µ(4s�2�t
2�t ) s 2 [2+t

4 , 1].

(3) Define

h(s, t) =

8
<

:

�(2s) 2s 2 [0, 1� t]
�(1� t) 2s 2 [1� t, 1 + t]

�(2(1� s)) 2s 2 [1 + t, 2].

Actually, for parts (1) and (2) there is a slicker approach, (this is in Hatcher). A reparametriza-
tion of a path � is a composition � � ', where ' : I �! I is any map satisfying '(0) = 0 and
'(1) = 1. It is clear that any such ' is homotopic to the identity map of I (just use a straight-line
homotopy). For (1), we can write cx · � as a reparametrization of �. Thus cx · � = � � ' 'p �. A
similar argument also works for (2). ⌅

Ok, now we know that we have a group structure on ⇡1(X,x0)!
So far, we have only seen examples of trivial fundamental groups. Our first major result in the

course will be the computation of the fundamental group of the circle. In particular, we will show
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that it is nontrivial! The argument will involve a number of new ideas, and one thing I hope you
will learn from this course is that computing fundamental groups is hard!

4. Fri, Jan. 24

Today, we will discuss the fundamental group of S1. We will need the following technical result
that could have (should have) been included in the fall semester.

Proposition 4.1. (Lebesgue number lemma)[Munkres, 27.5 or Lee, 7.18] Let U be an open cover of
a compact metric space X. Then there is a number � > 0 such that any subset A ✓ X of diameter
less than � is contained in an open set from the cover.

For any n, consider the loop in S1 given by �n(t) = e2⇡int. For today, we will denote the standard
basepoint of S1, the point (1, 0), by the symbol ?.

Theorem 4.2. The assignment n 7! �n is an isomorphism of groups

� : Z
⇠=�! ⇡1(S

1, ?).

Proof. Let’s start by showing that it is a homomorphism. On your next homework assignment,
you are asked to show that if G is any topological group with unit e, then composition of loops in
⇡1(G, e) agrees with pointwise multiplication of loops. But S1 is a topological group (the group of
complex numbers of norm 1). This means that the path-composite �n ·�k is path-homotopic to the
loop defined by

�(t) = e2⇡inte2⇡ikt = e2⇡i(n+k)t = �n+k(t).

To show that � is also a bijection, we will rely on the exponential map

p :R �! S1

t 7! e2⇡it.

Note that p�1(?) = Z. One important property of this map that we will need is that we can cover
S1, say using the open sets U1 = S1 \ {(1, 0)} and U2 = S1 \ {(�1, 0)}. On each of these open
sets Ui, the preimage p�1(Ui) is a countable disjoint union of subsets Vi,j of R, and p restricts to a
homeomorphism p : Vi,j

⇠= Ui.

If f : X �! S1 is a map from some space X, then by a lift
f̃ : X �! R we mean simply a map such that p � f̃ = f .

R
p
✏✏

X
f
//

f̃
>>

S1

Lemma 4.3. Let � : I �! S1 be a loop at ? and let n 2 Z. Then there is a unique lift �̃ : I �! R
such that �̃(0) = n.

Proof. By the Lebesgue number lemma applied to I, there is a subdivision of I into subintervals
[si, si+1] such that each subinterval is contained in a single ��1(Ui).

Consider the first such subinterval [0, s1] ✓ ��1(U2). Now our
lifting problem simplifies to that on the right. The interval [0, s1]
is connected, so the image of �̃ must lie in a single component
V1,j . And we have no choice of the component since we have
already decided that �̃(0) must be n. Call the component V2,0.

qV2, j

p

✏✏
[0, s1] �

//

�̃
::

U2

Now our lifting problem reduces to lifting against the homeomorphism p2,0 : V2,0
⇠= U2, and we

define our lift on [0, s1] to be the composite p�1
2,0 ��. Now play the same game with the next interval

[s1, s2]. We already have a lift at the point s1, so this forces the choice of component at this stage.
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By induction, at each stage we have a unique choice of lift on the subinterval [sk, sk+1]. Piecing
these all together gives the desired lift �̃ : I �! R. ⌅

Thus given a loop � at ?, there is a unique lift �̃ : I �! R that starts at 0. The endpoint of the
lift �̃ must also be in p�1(0) = Z. We claim that the function � 7! w(�) = �̃(1) is inverse to �.
First we must show it is well-defined.

Lemma 4.4. Let h : � 'p � be a path-homotopy between loops at ? in S1. Then there is a unique
lift h̃ : I ⇥ I �! R such that h̃(0, 0) = 0.

Proof. We already know about the unique lift �̃ on I ⇥ 0. It is also clear that the only possible lift
on 0⇥ I is the constant lift. Now use the Lebesgue number lemma again to subdivide the compact
square I ⇥ I so that every subsquare is mapped by � into one of the Ui. Using the same argument
as above, we get a unique lift on each subsquare, starting from the bottom left square and moving
along each row systematically. ⌅

Note that the lift h̃ is a path-homotopy between the lifts �̃ and �̃. This is because h̃(0, t) and
h̃(1, t) are lifts of constant paths. By the uniqueness of lifts, according to Lemma 4.3, the lift of a
constant path must be a constant path. It follows that �̃(1) = �̃(1). This shows that the function
w : ⇡1(S1) �! Z is well-defined.

(To be continued on Monday. . . )
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